Mamouni My Ismail

Devoir Libre n°29 (Pr. Michel Quercia)

Équations différentielles Exemples d'étude qualitative

MP-CPGE Rabat

Blague du jour

Les Irakiens sont dans la rue et crient : A bas Clinton, à bas Clinton $\,!.\,$

Un autre Irakien intervient et dit aux manifestants : Ce n'est plus Clinton le président, c'est Bush.

Les manifestants répondent : Mais ça n'a aucun sens ! On ne va tout de même pas crier "A babouche ! A babouche !"

La famille des Riccati

Jacopo Francesco Riccati (1676-1754) était un physicien et mathématicien italien, père de Vincenzo Riccati et de Giordano Riccati. Ses travaux en hydraulique (canaux de Venise) et en acoustique le conduisent à résoudre des équations différentielles du second ordre en les réduisant au 1er ordre et plus généralement à rechercher des méthodes de séparation des variables afin d'obtenir les solutions par simples quadratures. Ses travaux furent publiés après sa mort par ses fils à partir de 1764 sous le titre Opere del conte Jacopo Riccati.

Exemple d'une étude qualitative.

On considère l'équationn différentielle $(E): x' = x^2 - t$ et l'ensemble $D_0 = \{(t,x) | x^2 - t < 0\}$. Soit x est une solution de (E) vérifiant $(t_0, x(t_0)) \in D_0$.

- Supposons $\exists t > t_0 \text{ tel que } x^2(t) t \geq 0.$
 - a Montrer que $t_1 = \min\{t > t_0 \mid x^2(t) t > 0\}$ existe, puis que $x^2(t_1) t_1 = 0$.
 - b En déduire que $x(t) \underset{t \to +\infty}{\sim} -\sqrt{t}$.
 - c Si $x(t_1) = \sqrt{t_1}$, étudier la fonction $y(t) = x(t) \sqrt{t}$ puis en déduire une contradiction.
 - d Si $x(t_1) = -\sqrt{t_1}$, de façon pareille en déduire une contradiction.
- 2 En déduire que la courbe intégrale reste dans D_0 .
- Supposons que la solution maximale (à droite) est définie sur $[t_0, \beta[$, avec $\beta \in \mathbb{R}$.
 - a Montrer que pour tout $t \in [t_0, \beta[$, on $a \beta < x'(t) < 0$.
 - b En déduire que x' est intégrable sur $[t_0, β[$, puis que x(t) admet une limite finie quand t tend vers β.
 - c En déduire une contradiction.

Problèmes Corrigés-MP 2010-2011

- 4 Conclure que $\beta = +\infty$.
- En remarquant que pour tout $t \ge t_0$, on a x'(t) < 0, montrer que $\lim_{t \to +\infty} x(t) = -\infty$.
- En déduire que $x''(t) \ge 0$ à partir d'un certain rang, puis que $\lim_{t \to +\infty} x'(t) = \ell \in \mathbb{R}$.
- 7 On suppose que $\ell \neq 0$.
 - a Montrer que $x(t) \sim \ell t$, puis que puis et $x'(t) \sim \ell^2 t^2$.
 - b En déduire que $x'''(t_2) = 2x + \frac{1}{2x^2}$ qui est négatif pour t assez grand.
 - c En déduire une contradiction.
- $\begin{array}{c}
 \hline
 8
 \end{array}$ En déduire que $x(t) {\underset{t \to +\infty}{\sim}} \sqrt{t}$.

2 Étude d'un système autonome de taille 2.

Soit
$$n > 0$$
 et (S) :
$$\begin{cases} x'(t) = \frac{2}{n}x(t)y(t) \\ y'(t) = -x^2(t) + y^2(t). \end{cases}$$

Soit $\gamma: t \mapsto (x(t), y(t))$ une solution de (S). Trouver d'autres solutions présentant une symétrie avec γ .

Réponse : $\gamma_1(t) = (-x(t), y(t))$ et $\gamma_2(t) = ...$ sont aussi solutions de (S).

- Montrer que s'il existe t_0 tel que $x(t_0) = 0$ alors x(t) = 0 pour tout t.
- De même, montrer que s'il existe t_0 tel que $x(t_0) = y(t_0) = 0$ alors x(t) = y(t) = 0 pour tout t.
- En déduire que pour λ , μ non nuls et x ne s'annulant pas, $\sigma: t \mapsto \lambda(x(\mu t), y(\mu t))$ est solution de (S) si et seulement si $\mu = \lambda$.
- $\boxed{5}$ En déduire des symétries des solutions maximales de (S).
- En déduire que toute trajectoire maximale qui touche l'axe des $\mathbf x$ est symétrique par rapport cet axe.
- On se propose de déterminer les courbes du plan formes des points (x_0, y_0) où les solutions de (S) ont des tangentes parallèles aux axes (Ox) et (Oy).
 - a Montrer que si on a $x(t_0) = 0$, alors x(t) = 0 pour tout t et y(t) est arbitraire.
 - b Montrer que si on a $y(t_0) = 0$, alors $x(t_0) = 0$ est arbitraire.
 - © En déduire que l'ensemble des points où la tangente est verticale est la réunion des deux axes (Ox) et (Oy) privée de (0,0).
 - ${\tt c}$ Avec un raisonnement pareil, montrer que l'ensemble des points où la tangente horizontale est la réunion des deux bissectrices des axes, privée de $({\tt 0},{\tt 0})$.
 - d En déduire quelques solutions particulières.

Réponse : $x(t) = 0, y(t) = \frac{1}{\lambda - t}$.

- - Montrer que $\frac{2}{n}x\psi' = \psi x^2$ avec $\psi = \Phi^2$.
 - $\text{En d\'eduire que } \psi(x) = |x|^n \left(\lambda + \frac{n}{(n-1)x}\right) \text{ si } n \neq 1 \text{ et } \psi(x) = |x|(\lambda \ln|x|) \text{ si } n = 1.$
 - Montrer que pour une courbe intégrale qui ne touche aucun des deux axes, on peut exprimer y en fonction de \mathbf{x}

Réponse : $\mathbf{x'}(\mathbf{t}) \neq \mathbf{0}$, donc $\mathbf{t} \mapsto \mathbf{x}(\mathbf{t})$ injective.

- Montrer qu'une courbe intégrale qui touche l'axe des y est incluse dans cet axe.
- Montrer que pour une courbe intégrale qui touche l'axe des x en dehors de (0,0), on a :

$$y(x) = \Phi(x) = \pm \sqrt{\psi(x)}$$
.

En déduire toutes les courbes intégrales.

A la prochaine