CONCOURS MARROCAIN 2005 MATHS II .

corrigé de Brahim Benmimoun (MP MEKNES).

I)PRÉLIMINAIRES

1 Remarque : si $\alpha \in \mathbb{N}$ alors $D_{f_{\alpha}} = \mathbb{R}$.

 $1.1 f_{\alpha}$ est de classe $C^1 sur] - 1, +\infty [$ et on a :

$$\forall x \in]-1, +\infty[; (1+x)f'_{\alpha}(x) - \alpha f_{\alpha}(x) = 0.$$

- 1.2 Puisque R > 0: S_a est de classe C^{∞} sur $] \mathbb{R}, \mathbb{R}[$.
- 1.2.a Si $x \in]-r,r[$ où $r=min(1,\mathbb{R}),$ par injection dans l' équation (1) on trouve : S_a est solution de (1) ssi $\forall k \in \mathbb{N}; (k+1)a_{k+1} = (\alpha-k)a_k.$
- 1.2.b Une reccurence immédiate donne :

$$a_k = \frac{\prod_{j=0}^{k-1} (\alpha - j)}{k!} a_0, \forall k \in \mathbb{N}.$$

1.2.c si $\alpha \in \mathbb{N}$ il est clair que S_a est un polynôme donc le rayon est infini. Si $\alpha \in \mathbb{N}$ par le critère d'Alembert le rayon de convergence est 1. Si $\alpha \in \mathbb{R}/\mathbb{N}$ on a f_{α} est solution du problème de Cauchy :

$$y(o) = 1, (1+x)y' - \alpha y \text{sur l'ouvert}] - 1, +\infty[$$

D'aprés le théorème de Cauchy - Lipschitz la somme de la serie entière S_a qui verifie $S_a(0) = 1$ coincide avec f_{α} sur]-1,1[.

Si $\alpha \in \mathbb{N}$ S_a coincide avec f_α même sur $]-\infty, +\infty[$.

 $1.3 \ f_{\frac{1}{2}}(x) = \sum_{0}^{+\infty} b_k x^k$ en utilisant le produit de Cauchy :

$$(f_{\frac{1}{2}})^2(x) = 1 + x \Longleftrightarrow \forall q \geqslant 2; \sum_{k=0}^q b_k b_{q-k}, b_0 = 1.$$

- $2.1 \ u^{p-1} \neq 0$ d'où l'existance de x_0 verifiant $u^{p-1}(x_0) \neq 0$.
- 2.2 Soient $(\alpha_0,...,\alpha_{p-1})$ des réels vérifiant : $\sum_{i=0}^{p-1} \alpha_i u^i(x_0) = 0$ si on suppose $(\alpha_0,...,\alpha_{p-1}) \neq 0$
- (0,...,0) soit $j = \{i/\alpha_i \neq 0 \text{ alors } \sum_{i=j}^{p-1} \alpha_i u^i(x_0) = 0 \text{ d'où en compossant par } u^{p-1-j} \text{ on trouve : } \alpha_j u^{p-1}(x_0) = 0 \text{ de sorte que } \alpha_j = 0 \text{ d'où une contradiction.}$

- 2.3 $(x_0, ..., u^{p-1}(x_0))$ une famille libre de cardinal p d'un espace vectoriel de dimension n, on en deduit que $p \le n$ comme $u^p = 0$ alors $u^n = u^{n-p}u^p = 0$.
- $2.4~X^p$ est un polynôme unitaire annulateur de u donc Π^u divise X^p de sorte que Π^u est de la forme X^j où $j \leq p$.

si j < p alors l'expression $u^j = 0$ menerait à une contradiction en conclusion : $\Pi_u = X^p$.

II ETUDE D' ÉQUATIONS DU TYPE $X^2 = A$ DANS $M_n(\mathbb{R})$

A. un exemple

1. on vérifie facilement que sp(A) = 1, 2, 3 et donc A admet trois valeurs propres distinctes de sorte que $A \in M_3(\mathbb{R})$ admet est diagonalisable.

2. on note
$$1 = \lambda_1, 2 = \lambda_2, 3 = \lambda_3$$
 on vérifie que $e_1 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $e_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$, $e_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

3. e_1, e_2, e_3 sont des vecteurs propres associés réspectivement aux valeurs propres $\lambda_1, \lambda_2, \lambda_3$ qui sont distinctes donc (e_1, e_2, e_3) est une base de \mathbf{R}^3 on note $B = (e_1, e_2, e_3)$.

$$D = Mat(u, B) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

$$A = PDP^{-1} \text{ où } P = \begin{pmatrix} -1 & 1 & 1\\ 1 & 1 & 1\\ 0 & -1 & 0 \end{pmatrix}$$

4.

4.1 Facilement $v^2 = u, uv = vu$.

 $4.2\ uv(e_i) = \lambda_i v(e_i) \forall i \in \{1,2,3\}$ ainsi $v(e_i) \in Ker(u - \lambda_i id_{\mathbb{R}}) = Ved(e_i)$ d'où $v(e_i)$ est colineaire à e_i on note $v(e_i) = \alpha_i e_i$ où $\alpha_i \in \mathbb{R}$

$$4.3 \ Mat(v,B) = \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{pmatrix}$$

 $v^2 = u$ on trouve $\alpha_i^2 = \lambda_i$ de sorte que $\alpha_i \in \{-\lambda_i, \lambda_i\}$.

5. on trouve huit solutions de la forme
$$X = P \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{pmatrix} P^{-1}$$
 où $\alpha_i \in \{-\lambda_i, \lambda_i\}$.

B. Quelques résultats généraux

1

1.1
$$v^2p = u^p = 0$$
 et $v^{2(p-1)} = u^{p-1}$

on a v est nilpotent d'idice noté $q \in 2p-1, 2p$ or $q \leqslant n$ d'où $2p-1 \leqslant q \leqslant n$ de sorte que $p \leqslant \frac{n+1}{2}$.

- 1.2 $M=\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right)$ nilpotent d'indice p=2 qui ne vérifie pas $2\leqslant \frac{2+1}{3}$ D'où le résultat.
- 2. Par un calcul facile $\omega^2 = (\sum_{i=0}^{n-1} b_i u^i)(\sum_{j=0}^{n-1} b_j u^j) = \sum_{0 \le i,j \le n-1} b_i b_j u^{i+j} = \sum_{q=0}^{2n-1} (\sum_{i=0}^q b_i b_{q-j}) u^q$ $= \sum_{q=0}^{p-1} (\sum_{i=0}^q b_i b_{q-j}) u^q = b_0^2 I_E + 2b_o b_1 u = I_E + u.$
- 3.1 D'après 1.2 on a $(x_1,...,u^{n-1}(x_1))$ est libre ayant n éléments donc base de E et par suite g(x) s'écrit $\sum_{i=0}^{n-1} \alpha_i u^i(x_1)$.
- $3.2 \ gu = g(g^2 I) = (g^2 I)g = ug; \\ B = (x_1, ..., u^{n-1}(x_1)) \ \text{est une base de E on vérifie}$ facilement que $\forall j \in \{0, 1, ..., n-1\}$ $g(u^j(x_1)) = \sum_{i=0}^{n-1} \alpha_i u^i(u^j(x_1))$ d'où le résultat.
 - $3.3 \sum_{i=0}^{n-1} \alpha_i u^i = 0$ on applique à x_1 on trouve alors le résultat.

$$I_E + u = (\sum_{i=0}^{n-1} \alpha_i u^i)^2 = \sum_{q=0}^{n-1} (\sum_{i=0}^q \alpha_i \alpha_{q-i}) u^2$$

puisque $(I_E, u_1, ..., u_{n-1})$ est libre on trouve alors le résultat.

- $3.4 \ \alpha_0^2 = 1 = b_0^2 \ \text{soit} \ \epsilon \in \{-1,1\} \ \text{tel que} \ \alpha_0 = \epsilon b_0 \ \text{on note par une reccurence finie simple que} \ \alpha_i = \epsilon b_i, \forall i \in \{0,...,n-1\} \ \text{ainsi} \ g = -\omega \ \text{ou} \ g = \omega.$
 - 4. Application

on note
$$M = I + J$$
 où $J = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$

En considérant l'endomorphisme u de \mathbb{R}^4 associé à J; qui est nilpotent d'indice 4 d'après l'étude précedente on trouve $X^2=M\Longleftrightarrow X=\sum_{i=0}^3\alpha_iJ^i$ ou $X=-\sum_{i=0}^3b_iJ^i$.

- 5.1 $\nu d = d\nu$ d'où $(d \lambda I_E)\nu = \nu (d \lambda I_E)$ d'où $E_k = Ker(d \lambda I_E)$ est stable par ν Si p l'indice de nilpotente de ν alors $\nu_{\lambda}^p = 0$ d'où ν_{λ} est nilpotent on note son indice $p_{\lambda}(p_{\lambda} \leqslant p)$.
- 5.2 Soit $\lambda \in S_p(d)$ Soit $x_0 \in E_\lambda$ tel que $:\nu^{p_\lambda-1}(x_0) \neq 0$ alors $d(\nu^{p_\lambda-1}(x_0)) = u(\nu^{p_\lambda-1}(x_0)) = \lambda \nu^{p_\lambda-1}(x_0)$ et comme $\nu^{p_\lambda-1}(x_0) \in E_\lambda$ alors λ est une valeur propre de dOn a $sp(d) \subset sp(u) \subset \mathbb{R}_+^*$, donc 0 n'est pas une valeur propre de d et par suite d est inversible.

détant diagonalisable donc : $E=\bigoplus E_{\lambda_i}$ avec $\lambda_1,...\lambda_r$ les valeurs propres distincts de d.

Si
$$x = \sum_{i=1}^{r} x_i$$
 où $x_i \in E_{\lambda_i}$ alors $d(x) = \sum_{i=1}^{r} \lambda_i x_i$.

5.4

Si δ endomorphisme de E vérifiant $\delta^2 = d$ et $\nu \delta = \delta \nu$ alors δ laisse stable les espaces propres de d et $\delta^2/E_{\lambda_i} = \lambda_i I_{E_{\lambda_i}}$.

Il suffit de prendre $\delta/E_{\lambda_i} = \sqrt{\lambda_i} I_{E_{\lambda_i}}$. Soit alors δ endomorphisme de E définit par :

Si
$$x = \sum_{i=1}^{r} x_i$$
 où $x_i \in E_{\lambda_i}$ alors $\delta(x) = \sum_{i=1}^{r} \sqrt{\lambda_i} x_i$.

On vérifie facilement que : $\delta^2 = d$ et $\nu \delta = \delta \nu$.

5.5

 $det(\delta^2) = (det\delta)^2 = det(d) \neq 0$ donc $det(\delta) \neq 0$ et par suite δ est inversible. On a : $\nu \delta^{-2} = \nu (\delta^2)^{-1} = \nu d^{-1}$ or $\nu d = d\nu$ et donc $d^{-1}\nu = \nu d^{-1}$. Ainsi $\nu \delta^{-2} = \delta^{-2} \nu$ et par suite $(\nu \delta^{-2})^n = (\nu)^n (\delta^{-2})^n = 0$. D'où $\nu\delta^{-2}$ est nilpotent.

5.6

D'après II B , si on note
$$u_1 = \nu \delta^{-2}$$
 et $w = \sum_{i=1}^{n-1} b_i u_1^i$.

Alors u_1 est nilpotent et on a $w^2 = I_E + u_1$

Ainsi $w^2 \delta^2 = \delta^2 + \nu = d + \nu = u$.

Soit $v = w\delta$ alors:

$$w\delta = \sum_{i=1}^{n-1} b_i (\nu \delta^{-2})^i \delta =$$

$$\sum_{i=1}^{n-1} b_i \delta(\nu \delta^{-2})^i = \delta \sum_{i=1}^{n-1} b_i (\nu \delta^{-2})^i = \delta w.$$

Ainsi $v^2 = (w\delta)^2 = w^2\delta^2 = u$

Enfin il suffit de noter $P = \sum_{i=1}^{n-1} b_i X^i$ on a bien $P \in \mathbb{R}_{n-1}[X]$.

III. RACINE CARRÉE D'UNE MATRICE SYMÉTRIQUE POSITIVE.

1.

Notons $N={}^tMM$ alors : ${}^tN={}^t({}^tMM)={}^tMM=N$ d'où N est symétrique . Soit $X\in \mathbb{M}_{n1}(\mathbb{R})$ on a :

$${}^tXNX = {}^t(MX)(MX) = \sum_{i=1}^n z_i^2 \geqslant 0 \text{ où } MX = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ \vdots \\ z_n \end{pmatrix}.$$

D'où N est symétrique positive , on a le même conclusion si M est symétrique.

2.1

A étant réelle symétrique soit donc P matrice orthogonale telle que : $PA^tP = diag(\lambda_1, \lambda_2, ..., \lambda_n)$. où les λ_i sont les valeur propres de A.

 $[\Rightarrow]$

Supposons que A est positive, soit λ une valeur propre et $X \in \mathbb{M}_{n1}(\mathbb{R})$ non nul tel que :

$$AX = \lambda X$$
.

On a:

 $0 \leq {}^t XAX = \lambda^t XX = \lambda ||X||^2$ où |||| est la norme euclidienne de $\mathbb{M}_{n1}(\mathbb{R})$ et donc λ est positive.

 $[\Leftarrow]$

A étant réelle symétrique soit donc P matrice orthogonale telle que :

$$PA^tP = diag(\lambda_1, \lambda_2, ..., \lambda_n).$$

où les λ_i sont les valeur propres de A , on note ensuite $D = diag(\lambda_1, \lambda_2, ..., \lambda_n)$.

Ainsi A est positive . 2.2

Même raisonnement en remplaçant les inégalités larges par les inégalités strictes . $3.1\,$

A étant réelle symétrique soit donc P matrice orthogonale telle que : $PA^tP = diag(\lambda_1, \lambda_2, ..., \lambda_n)$ matrice qu'on note D.

où les λ_i sont les valeur propres de A qui sont positives car A est symétrique positive Soit $\Delta = diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, ..., \sqrt{\lambda_n})$ on à alors :

$$A={}^tPDP={}^tP\Delta\Delta P=({}^tP\Delta P)({}^tP\Delta P)=B^2 \ \ {\rm où} \ \ B={}^tP\Delta P.$$

Il est clair que B est symétrique, positive car ses valeur propres sont les $\sqrt{\lambda_i}$ positives d'où le résultat .

Si $A \in S_n^{++}$ alors $B \in S_n^{++}$ puisque les $\sqrt{\lambda_i}$ seront strictements positives.

3.2

- (a) f et g commutent donc tout espace propre de f est stable par g
- (b) g est un endomorphisme autoadjont donc diagonalisable et par suite g_{λ} est aussi diagonalisable.

Considérons $\alpha \in Sp(g_{\lambda}) \subset Sp(g) \subset \mathbb{R}^+$, alors $\alpha^2 \in Sp(g_{\lambda}^2)$.

Or $f = g^2$ donc $\lambda I_{E_{\lambda}(f)} = g_{\lambda}^2$ et par suite $\alpha^2 = \lambda$, ainsi $\alpha = \sqrt{\lambda}$.

En conclusion $Sp(g_{\lambda}) = {\sqrt{\lambda}}$ et donc $g_{\lambda} = \sqrt{\lambda}E_{\lambda}(f)$.

(c) f est un endomorphisme autoadjont donc diagonalisable et par suite $E = \bigoplus E_{\lambda}(f)$.

Si
$$x = \sum_{\lambda \in Sp(f)} x_{\lambda}$$
 alors : $g(x) = \sum_{\lambda \in Sp(f)} \sqrt{\lambda} x_{\lambda}$

Ainsi g est complétement detérminé ; de plus $B=Mat(g,B_c)$ où B_c est la base canonique de $\mathbb{M}_{n,1}(\mathbb{R})$, d'où i'unicité de B.

3.3

Soit B_1 une base adaptée à la décomposition $E = \bigoplus_{\lambda \in Sp(f)} E_{\lambda}(f)$ alors :

 $A = PDP^{-1}$ et $\sqrt{A} = PD_1P^{-1}$ avec $D = diag(\lambda_1, \lambda_1, ..., \lambda_n)$ et $D_1 = diag(\sqrt{\lambda_1}, \sqrt{\lambda_2}, ..., \sqrt{\lambda_n})$ (où les λ_i sont les valeurs propres de A et P la matrice de passage de B_c à B_1).

Notons R le polynôme d'interpolation da lagrange associé aux suites :

 $(\mu_1, \mu_1, ..., \mu_r), (\sqrt{\mu_1}, \sqrt{\mu_2}, ..., \sqrt{\mu_r}) \text{ avec } Sp(A) = {\mu_1, \mu_1, ..., \mu_r}.$

Alors $R(D) = D_1$ et par suite $R(A) = R(PDP^{-1}) = PR(D)P^{-1} = PD_1P^{-1} = \sqrt{A}$, d'où le résultat.

4.1

 $A \in S_n^+ \text{ donc } \sqrt{A} \in S_n^+.$ On a : $A = {}^t(\sqrt{A}C\sqrt{A}) = {}^t(\sqrt{A}){}^t(C){}^t(\sqrt{A}) = \sqrt{A}\sqrt{C}\sqrt{A}.$

D'autre part : Si $X \in \mathbb{M}_{n1}(\mathbb{R})$ on a : ${}^t X \sqrt{A} C \sqrt{A} X = {}^t (\sqrt{A} X) C \sqrt{A} X = {}^t Y C Y \geqslant 0$ où $Y = \sqrt{A}X$ ainsi $\sqrt{A}C\sqrt{A}$ est symétrique positive et par suite :

$$0 \leqslant \sum_{\lambda \in Sp(\sqrt{A}C\sqrt{A})} \lambda = Tr(\sqrt{A}C\sqrt{A}) = Tr(\sqrt{A}\sqrt{A}C) = Tr(AC).$$

4.2

Puisque A est définie positive il en est de même de \sqrt{A} et donc \sqrt{A} est inversible , notons $S = \sqrt{AC\sqrt{A}}$ qui est symétrique rèelle donc diagonalisable ainsi AC est diagonalisable car $\sqrt{A}S(\sqrt{A})^{-1} = AC$.

5.1

AB est symétrique en effet : ${}^{t}(AB) = {}^{t}(BA) = {}^{t}A{}^{t}B = AB$.

Soit P et Q deux polynômes tels que : $\sqrt{A} = P(A)$ et $\sqrt{B} = Q(B)$.

Puisque A et B commutent il en est de même de A et Q(B) et par suite P(A) et Q(B)commutent , d'où le résultat .

5.2 $(\sqrt{A}\sqrt{B})^2 = \sqrt{A}\sqrt{B}\sqrt{A}\sqrt{B} = (\sqrt{A})^2(\sqrt{B})^2 = AB$. Or \sqrt{A} et \sqrt{B} sont symétriques et commutent donc $\sqrt{A}\sqrt{B}$ est symétrique et par suite $AB = (\sqrt{A}\sqrt{B})^2$ est symétrique positive (cf : question III.1)

5.3

On a \sqrt{A} et \sqrt{B} sont deux éléments de S_n^+ qui commutent donc d'après III.5.1 et III. 5.2 : $\sqrt{A}\sqrt{B}$ est un élément de S_n^+ . Comme $\sqrt{A}\sqrt{B} \in S_n^+$ et $(\sqrt{A}\sqrt{B})^2 = AB$ alors d'après III.3 : $\sqrt{AB} = \sqrt{A}\sqrt{B}$.

6.1

Soit $(M_n)_n$ une suite à éléments dans S_n^+ qui converge vers une matrice M de $\mathbb{M}_n(\mathbb{R})$. Soit $X \in \mathbb{M}_{n1}(\mathbb{R})$ on a alors : $\forall n \in \mathbb{N}^*$, ${}^tM_n = M_n$ et ${}^tXM_nX \geqslant 0$. En tendant n vers l'infini et en utilisant la continuité des endomorphismes de $\mathbb{M}_n(\mathbb{R})$ définis par : $A \mapsto {}^tXAX$, $A \mapsto {}^tA$ on trouve :

$${}^{t}M = M, {}^{t}XMX \geqslant 0.$$

Ainsi S_n^+ est un fermé de $\mathbb{M}_n(\mathbb{R})$

Autre façon : considérons l' endomorphisme f de $\mathbb{M}_n(\mathbb{R})$ défini par : $A \mapsto {}^t A - A$ qui est évidement continu , par suite $S_n = f^{-1}\{0\}$ est un fermé de $\mathbb{M}_n(\mathbb{R})$.

D'autre part pour $X\in \mathbb{M}_{n1}(\mathbb{R})$ notons g_X l'application de S_n dans \mathbb{R} définie par :

$$A\mapsto {}^tXAX,\,g_X$$
 est continue et Comme $S_n^+=\bigcap_{X\in\mathbb{M}_{n1}(\mathbb{R})}g_X^{-1}[0,+\infty[$ alors S_n^+ est un fermé S_n

(comme interssection de fermés de S_n) et par suite fermé de $\mathbb{M}_n(\mathbb{R})$.

6.2

Notons $\varphi: X \mapsto X^2$ l'application de S_n^+ dans lui même il est clair que φ est continue et $\varphi \circ \Phi = I_{S_n^+}$ ainsi Φ est bijective et $\Phi^{-1} = \varphi$.

6.3

 $(A_k)_k$ converge vers A donc par continuité de la trace; $(Tr(A_k))_k$ converge vers Tr(A). D'autre part $\|\sqrt{A_k}\|^2 = Tr({}^t\sqrt{A_k}\sqrt{A_k}) = Tr(A_k)$ qui le terme d'une suite convergente donc la suite $(\sqrt{A_k})_k$ est bornée.

6.4

la suite $(\sqrt{A_k})_k$ du fermé S_n^+ est bornée donc possède au moins une valeur d'adhérence, il existe une sous suite $(\sqrt{A_{\chi(k)}})_k$ de $(\sqrt{A_k})_k$ qui converge vers un certain C de S_n^+ .

Si C_1 et C_2 deux valeur d'adhérences de $(\sqrt{A_k})_k$, soient alors $(\sqrt{A_{\chi_1(k)}})_k$ et $(\sqrt{A_{\chi_2(k)}})_k$ deux sous suites de $(\sqrt{A_k})_k$ qui convergent respectivement vers C_1 et C_2 .

Donc on composant par φ qui est continue et en utilisant la convergence de la suite $(A_k)_k$ on trouve $C_1^2 = A = C_2^2$ or φ est bijective et donc $C_1 = \sqrt{A} = C_2$.

D'où la suite $(\sqrt{A_k})_k$ possède une unique valeur d'adhérence qui n'est d'autre que \sqrt{A} d'où : $(\Phi(\sqrt{A_k}))_k$ converge vers \sqrt{A} .

En conclusion Φ est continue.

7.1

Il est clair que l'application $H \mapsto AH + HA$ est un endomorphisme de $\mathbb{M}_n(\mathbb{R})$ montrons qu'elle est injective.

soit $H \in \mathbb{M}_n(\mathbb{R})$ telle que : AH + HA = 0.

 $A \in S_n^+$ donc diagonalisable et ses valeur propres sont strictements positives.

Soit $(X_1, X_2, ..., X_n)$ une base de vecteurs propres de l'endomorphisme de \mathbb{R}^n canoniquement associé à A, notons λ_i la valeur propre associée à X_i pour i = 1, 2, ..., n.

Soit $i \in \{1, 2, ..., n\}$ alors $(AH + HA)^t X_i = 0$ et donc $AH^t X_i = -HA^t X_i$ et par suite $AH^t X_i = -\lambda_i H^t X_i$ donc nécessairement $H^t X_i = 0$ car si non A aurait une valeur propre négative $-\lambda_i$ ce qui est en contradiction avec $sp(A) \subset \mathbb{R}_+^*$.

En conclusion $\forall i \in \{1, 2, ..., n\}; H^t X_i = 0$ et par suite H = 0 car l'endomorphisme de \mathbb{R}^n canoniquement associé est nul sur la base $(X_1, X_2, ..., X_n)$.

D'où $H \mapsto AH + HA$ est un automorphisme de $\mathbb{M}_n(\mathbb{R})$.

7.2

Soit $A \in \mathbb{M}_n(\mathbb{R})$.

si $H \in \mathbb{M}_n(\mathbb{R})$ on a alors :

$$\Psi(A+H)-\Psi(A)=(A+H)^2-A^2=\underbrace{AH+HA}_{\mbox{lineaire en H n\'egligeable par rapport \`a~H}^2$$

Donc Ψ est différentiable en A et $\forall H \in \mathbb{M}_n(\mathbb{R})$ on a :

$$d\Psi(A)(H) = AH + HA$$

7.3

L'application notée $\widetilde{\Psi}: A \mapsto A^2$ de S_n^+ dans $\mathbb{M}_n(\mathbb{R})$ est différentiable qui réalise une bijection de l'ouvert S_n^{++} de S_n^+ dans lui même.

De plus $\forall A \in S_n^{++}$; $d\widetilde{\Psi}(A) = d\Psi(A)$ est un automorphisme de $\mathbb{M}_n(\mathbb{R})$.

Donc Ψ réalise un difféomorphisme de S_n^{++} dans lui même .