PROBLÈMES CORRIGÉS-MP

E Corrigé, Pr. Stainer, CPGE Clemenceau, Nantes

- ① **a** La matrice A a un polynôme caractéristique scindé, à racines simples, donc est diagonalisable ; de plus ses sousespaces propres sont de dimension 1.
 - **b** Si *B* commute avec *A*, elle stabilise les trois sous-espaces propres de *A*, qui sont des droites. Ces trois droites sont donc dirigées par des vecteurs propres de *B*. Une base de vecteurs propres de *A* est donc ausi une base de vecteurs propres de *A* : *B* et *A* sont simultanément diagonalisables.
 - **c** Interpolation de Lagrange (α , β , γ distincts). On peut imposer la condition supplémentaire deg $T \leq 2$.
 - **d** D'après la remarque faite en 1.b, il existe une matrice $P \in \mathcal{GL}_3(\mathbb{C})$ telle que $A = P.\operatorname{diag}(\alpha, \beta, \gamma).P^{-1}$ et $B = P.\operatorname{diag}(a, b, c).P^{-1}$. Alors $\operatorname{diag}(a, b, c) = T(\operatorname{diag}(\alpha, \beta, \gamma))$ et B = T(A).
 - e Le commutant de A est donc inclus dans l'algèbre commutative $\mathbb{C}[A]$ des polynômes en A. L'inclusion inverse est vérifiée pour tout matrice. Donc $\mathcal{C}(A) = \mathbb{C}[A]$. Avec la remarque du 1.c, $\mathcal{C}(A) = \mathbb{C}_2[A]$ et, comme P_A est de degré 3, (I_3, A, A^2) est une base de $\mathcal{C}(A)$.
- ② a Par définition, P_A est un polynôme annulateur de A, donc $(A \lambda I_3)^3 = 0$. En termes d'endomorphismes, $g^3 = 0$. De plus, comme P_A est le polynôme minimal de A, $(A \lambda I_3)^3 = 0$.

 $(\lambda I_3)^2 \neq 0$, donc $g^2 \neq 0$: g est nilpotent d'indice 2.

b On vérifie facilement que, pour tout vecteur $u \in \mathbb{C}^3$ tel que $g^2(u) \neq 0$, la famille $\mathcal{B} = (u, g(u), g^2(u))$ est libre. Comme l'espace vectoriel est de dimension 3, cette famille est une base de \mathbb{C}^3 . Dans une telle base, g a pour matrice

$$N = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right).$$

- Tout d'abord, h commute avec f, donc avec g. On en déduit $h(g(u)) = g(h(u)) = x_1g(u) + x_2g^2(u)$ et $h(g^2(u)) = g^2(h(u)) = x_1g^2(u)$. La matrice de h dans \mathcal{B} vaut donc $\begin{pmatrix} x_1 & 0 & 0 \\ x_2 & x_1 & 0 \\ x_3 & x_2 & x_1 \end{pmatrix} = x_1I_3 + x_2N + x_3N^2.$
- **d** On en déduit $h = x_1 Id + x_2 g + x_3 g^2$, puis, en substituant $f \lambda Id$ à g, l'existence d'un polynôme T de degré au plus 2 tel que h = T(f). Matriciellement, H = T(A).
- e On conclut comme au 1.e.
- ③ **a** Le polynôme P_A est annulateur de A, donc de f. Comme $X \lambda_1$ et $(X \lambda_2)^2$ sont premiers entre eux, d'après le lemme des noyaux, $\mathbb{C}^3 = \ker(f \lambda_1 Id) \oplus \ker(f \lambda_2 Id)^2$.
 - **b** Comme λ_1 est une valeur propre simple de f (de multiplicité 1 dans χ_A), le sous-espace propre associé $\ker(f \lambda_1 Id)$ est de dimension 1 ; donc $\ker(f \lambda_2 Id)^2$ est de dimension 2. De plus, c'est le noyau d'un polynôme en f, donc il est

Problèmes Corrigés-MP

stable par f. Dans une base \mathcal{B}' de \mathbb{C}^3 adaptée à la décomposition du 3.a, la matrice de f est de la forme $\begin{pmatrix} \lambda_1 & 0 \\ 0 & lI \end{pmatrix}$, où U représente $\widetilde{f}=f|_{\ker(f-\lambda_2 Id)^2}$. Comme $(\widetilde{f}-\lambda_2 Id)^2=0$, $N = U - \lambda_2 I_2$ vérifie $N^2 = 0$.

Si N=0, alors la matrice de f dans \mathcal{B}' est diagonale, f est diagonalisable et son polynôme minimal est à racines simples. Comme ce n'est pas le cas, $N \neq 0$: N est nilpotente d'indice

C

$$\mathbf{i} \quad M \begin{pmatrix} \lambda_1 & 0 \\ 0 & U \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & U \end{pmatrix} M \Leftrightarrow \begin{cases} L(U - \lambda_1 I_2) = 0 \\ (U - \lambda_1 I_2)C = 0 \\ UV = VU \end{cases} \Leftrightarrow$$

$$\begin{cases} L(U - \lambda_1 I_2) = 0 \\ (U - \lambda_1 I_2)C = 0 \\ VN = NV \end{cases}$$

Comme *U* admet comme polynôme annulateur $(X - \lambda_2)^2$, sa seule valeur propre est λ_2 , donc $U - \lambda_1 I_2$ est inversible. On

en déduit
$$M\begin{pmatrix} \lambda_1 & 0 \\ 0 & U \end{pmatrix} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & U \end{pmatrix} M \Leftrightarrow \begin{cases} L = 0 \\ C = 0 \\ VN = NV \end{cases}$$

ii Il s'agit de reprendre avec U le raisonnement des questions 2.a, b, c et d. On peut imposer la condition supplémentaire deg $R \leq 1$.

iii Les conditions imposées signifient que λ_1 est racine de $S - \mu$ et que λ_2 est racine au moins double de S - R; autrement dit, que S vérifie $\begin{cases} S(\lambda_1) = \mu \\ (S - R)(\lambda_2) = 0 \\ (S - R)'(\lambda_2) = 0 \end{cases}$, ou encore

$$\begin{cases} S(\lambda_1) = \mu \\ S(\lambda_2) = R(\lambda_2) \\ S'(\lambda_2) = R'(\lambda_2) \end{cases}.$$

Or l'application Δ définie de $\mathbb{C}_2[X]$ dans \mathbb{C}^3 par $\Delta(P) =$ $(P(\lambda_1), P(\lambda_2), P(\lambda_2))$ est linéaire, injective (si $\Delta(P) = 0$, alors P est de degré au plus 2 et possède au moins 3 racines comptées avec leur multiplicité, donc vaut 0), entre deux espaces vectoriels de même dimension finie ; donc Δ est un isomorphisme. D'où l'existence de $S \in \mathbb{C}_2[X]$ satisfaisant les condi-

tions
$$\begin{cases} S(\lambda_1) = \mu \\ S(\lambda_2) = R(\lambda_2) \\ S'(\lambda_2) = R'(\lambda_2) \end{cases}.$$

iv $S\left(\begin{pmatrix} \lambda_1 & 0 \\ 0 & U \end{pmatrix}\right) = \begin{pmatrix} S(\lambda_1) & 0 \\ 0 & S(U) \end{pmatrix}$. Or $S(\lambda_1) = \mu$; de plus, comme $(X - \lambda_2)^2$ est annulateur de U, S(U) = R(U). Donc $S\left(\begin{pmatrix} \lambda_1 & 0 \\ 0 & U \end{pmatrix}\right) = \begin{pmatrix} \mu & 0 \\ 0 & R(U) \end{pmatrix} = \begin{pmatrix} \mu & 0 \\ 0 & V \end{pmatrix} = M.$

Soit $B \in \mathcal{M}_3(\mathbb{C})$ et b l'endomorphisme de \mathbb{C}^3 canoniquement associé à B. Alors B commute avec A si et seulement si *b* commute avec *f*, i.e $M = \text{Mat }_{B'}(b)$ commute avec $\begin{pmatrix} \lambda_1 & 0 \\ 0 & U \end{pmatrix}$. C'est encore équivalent (la réciproque de 3.c. δ est évidente) à l'existence d'un polynôme $S \in \mathbb{C}_2[X]$ tel que $S\left(\begin{pmatrix} \lambda_1 & 0 \\ 0 & U \end{pmatrix}\right) = M$, i.e S(f) = b, i.e S(A) = B. Comme dans les questions 1 et 2, $C(A) = \mathbb{C}_2[A]$ et C(A) est de dimension 3.