

■ Corrigé: Pr. Taibi, CPGE Rabat, Maroc

Partie I

- 1. L'application $t \mapsto t^{x-1}e^{-t}$ est continue sur $]0, +\infty[$ pour tout réel x .
 - a. On a : $t^{x-1}e^{-t} \sim_{t\to 0^+} t^{x-1}$, donc $t\mapsto t^{x-1}e^{-t}$ est intégrable sur]0,1[si, et seulement 1-x<1 soit x>0.
 - b. On a aussi $t^{x-1}e^{-t} = \mathop{O}_{t \to +\infty}(\frac{1}{t^2})$, donc $t \mapsto e^{-t}t^{x-1}$ est intégrable sur $[1, +\infty[$.
- 2. L'application $t \mapsto t^{x-1}e^{-t} = e^{-t}e^{(z-1)\ln(t)}$ est continue sur $]0, +\infty[$, et que pour tout t>0, $\left|e^{-t}t^{z-1}\right| = e^{-t}t^{\Re(z)-1}$, donc par la question 1°), l'application $t\mapsto t^{z-1}e^{-t}$ est intégrable sur $]0, +\infty[$ si et seulement si $\Re(z)>0$.
- 3. Quelques formules utiles:
 - a. Les applications $t\mapsto t^z$ et $t\mapsto e^{-t}$ sont de classes C^1 sur $]0,+\infty[$ et que pour tout $z\in C$ tel que $\Re(z)>0$, on a : $|e^{-t}t^z|=e^{-t}t^{\Re(z)-1}\underset{t\mapsto +\infty}{\to} 0$. On applique alors une intégration par parties à l'intégrale $\Gamma(z+1)=\int\limits_0^{+\infty}t^ze^{-z-1}dt$:

$$\Gamma(z + 1) = \int_{0}^{+\infty} t^{z} e^{-z-1} dt = \left[-e^{-t} t^{z} \right]_{t=0}^{+\infty} +$$

$$z\int_{0}^{+\infty} t^{z-1}e^{-t}dt = z\Gamma(z) \text{ pour tout } z \text{ tel que } \Re(z) > 0$$

b. Pour tout $z \in C$ tel que $\Re(z) > 0$ et tout $p \in N^*$, on a : $\Gamma(z+p) = \Gamma((z+p-1)+1) = (z-p-1)\Gamma(z-p-1).$ D'où : $\prod_{k=1}^p \Gamma(z+k) = \prod_{k=1}^p (z-k-1)\Gamma(z-k-1) = \prod_{k=1}^{p-1} (z-k) \prod_{k=1}^{p-1} \Gamma(z-k)$ et par suite :

$$\Gamma(z+p) = \prod_{k=1}^{p-1} (z-k)\Gamma(z)$$

On prend $z = \alpha + 1$, on a : $\Re(z) = \Re(\alpha + 1) = \Re(\alpha) + 1 > 0$ et par suite

$$\Gamma(\alpha + 1 + p) = \gamma(\alpha + 1) \prod_{k=1}^{p-1} (\alpha + 1 + k) = \Gamma(\alpha + 1)(\alpha + 1)...(\alpha + p)$$

- c. Pour tout x>0, la fonction $t\mapsto t^{x-1}e^{-t}$ est continue et strictement positive, donc $\Gamma(x)=\int\limits_0^{+\infty}t^{x-1}e^{-t}dt>0$.
- d. Par un simple calcul, on a $\Gamma(1) = 1$ et par b) pour $\alpha = 0$, p = n, on a ::

$$\Gamma(n+1) = \prod_{k=1}^{n} k = n!$$

- 4. Développement en série de Γ.
 - a. Soit $z \in \mathbb{C}$ tel que $\Re(z) > 0$, on a: $\Gamma(z) =$

MAMOUNI MY ISM

$$\int_{]0,1[} t^{z-1}e^{-t}dt + \int_{[1,+\infty[} t^{x-1}e^{-t}dt$$
Ecrivons $e^{-t} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}t^n$, on a alors: $t^{z-1}e^{-t} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!}t^{z+n-1}$

Si l'on pose $f_n(t) = \frac{(-1)^n}{n!} t^{z+n-1}$ pour $t \in]0,1]$, on a : f_n est intégrable sur [0,1] pour tout entier naturel n et que $\int_{[0,1]} |f_n(t)| dt \leqslant \int_{[0,1]} \frac{1}{n!} dt = \frac{1}{n!}$ et puisque la série $\sum \frac{1}{n!}$ converge, il en résulte par le théorème d'intégration terme à terme que

$$\int_0^1 t^{z-1} e^{-t} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \int_0^1 t^{z+n-1} dt = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \frac{1}{z+n}$$

b. Posons
$$f_n(z) = \frac{(-1)^n}{n!} \frac{1}{z+n}$$
 pour $n \in \mathbb{N}$ et $z \in \mathbb{C} \setminus \mathbb{Z}^-$.

Pour $n \in \mathbb{N}$, la fonction f_n est continue sur $\mathbb{C}\backslash\mathbb{Z}^-$ (fraction rationnelle en z)

pour tout $z \in \mathbb{C}\backslash\mathbb{Z}^-$ et tout $n \in \mathbb{N}$, on a : $|f_n(z)| =$ $\frac{1}{n!} \frac{1}{|n+z|} \le \frac{1}{n!} \frac{1}{|n+\Re(z)|} \operatorname{car} |n+\Re(z)| \le |n+z|,$ donc $\sum f_n(z)$ converge absolument et par suite $\sum f_n$ converge simplement sur C\Z_-.

Soit K un compact inclu dans $\mathbb{C}\setminus\mathbb{Z}^-$, et $\alpha=d(Z^-,K)$, on a $\alpha > 0$ car \mathbb{Z}^- fermé et K compact. On a alors pour tout $z \in K$, et tout $n \in \mathbb{N}$, $|n+z| = d(-n,z) \geqslant \alpha$,

donc $|f_n(z)| \le \frac{1}{n!} \frac{1}{|n+z|} \le \frac{1}{n!} \frac{1}{\alpha}$. Comme la série $\sum \frac{1}{n!}$ converge, il en résulte que $\sum f_n$ converge localement uniformément sur C\Z-, donc par le théorème de continuité la fonction somme $\sum f_n$ est continue sur $\mathbb{C}\backslash\mathbb{Z}^-$.

On peut aussi montrer que $\sum f_n$ est continue en tout point z_0 de $\mathbb{C}\backslash\mathbb{Z}^-$ en effet: Comme $\mathbb{C}\backslash\mathbb{Z}^-$ est un ouvert, on a pour tout $z_0 \in \mathbb{C}\backslash\mathbb{Z}^-$, il existe r > 0 tel $B(z_0,r)\subset \mathbb{C}\backslash\mathbb{Z}^-$, on prend alors le compact $K=\overline{B}(z_0,\alpha)$ et on termine comme avant.

- Soit 0 < a < b et t > 0, on a : $t^{a-1} = e^{(a-1)\ln(t)}$.
 - Si $t \in]0,1]$, alors $\ln(t) \leq 0$, donc $(a-1)\ln(t) \geq (b-1)$ 1) ln(t) et comme $x \mapsto e^x$ est croissante, on déduit que $t^{a-1} \ge t^{b-1}$. Soit max $(t^{a-1}, t^{b-1}) = t^{a-1}$ Si t > 1, alors ln(t) > 0, donc $t^{a-1} < t^{b-1}et$ par suite $\max(t^{a-1}, t^{b-1}) = t^{b-1}.$ Conclusion finale : Pour tous 0 < a < b et t > 0, on a : $\max(t^{a-1}, t^{b-1}) \le t^{a-1} + t^{b-1}$.
 - Pour $t \in]0,1]$, on a d'après a) $0 < t^{x-1} \le$ $\max(t^{x-1}, t^{a-1}) = t^{a-1} = \max(t^{a-1}, t^{b-1})$ de même si t > 1, on a : $0 < t^{x-1} \le \max(t^{x-1}, t^{b-1}) =$ $t^{b-1} = \max(t^{a-1}, t^{b-1})$ En conclusion : $0 < t^{x-1} \le \max(t^{a-1}, t^{b-1})$ pour tout $t \in]0, +\infty[$
 - c. La fonction $f:(x,t)\mapsto t^{x-1}e^{-t}$ est continue sur

MAMOUNI MY ISM

PROBLÈMES CORRIGÉS-MP

$$\mathbb{R}_+^* \times \mathbb{R}_+^*$$

L'application $x \mapsto t^{x-1}e^{-t} = e^{-t}e^{(x-1)\ln(t)}$ est de classe C^1 sur \mathbb{R}_+^* et $\frac{d}{dx}f(x,t) = \ln(t)f(x,t)$ pour tout $(x,t) \in$ $\mathbb{R}_+^* \times \mathbb{R}_+^*$.

De plus pour tout compact $K = [a,b] \subset \mathbb{R}_+^*$ et tout $(x,t) \in K \times \mathbb{R}_+^*$, on a: $\left| \frac{d}{dx} f(x,t) \right| \leqslant \left| \ln(t) \right| e^{-t} t^{x-1} \leqslant$ $|\ln(t)| e^{-t} \max(t^{a-1}, t^{b-1}) \leqslant |\ln(t)| e^{-t} (t^{a-1} + t^{b-1})$ et que la fonction $\varphi: t \mapsto |\ln(t)| e^{-t} (t^{a-1} + t^{b-1})$ est intégrable sur \mathbb{R}_+^* car $\sqrt{t}\varphi(t) = \sqrt{t}(t^{a-1} + t^{b-1})e^{-t}|\ln(t)| \xrightarrow[t\to 0^+]{} 0$. Pour $t\geqslant 1$, $\varphi(t)\leqslant (t^{a-1} + t^{b-1})e^{-t}$ $t^{b-1})te^{-t} = (t^a + t^b)e^{-t}$

Donc par le théorème de dérivation sous le signe intégral, il en résulte que Γ est de classe C^1 sur l'ouvert \mathbb{R}_+^* et que

$$\Gamma'(x) = \int_0^{+\infty} \frac{d}{dx} f(x, t) dt = \int_0^{+\infty} \ln(t) t^{x-1} e^{-t} dt.$$

On a $\Gamma(x+1) = x\Gamma(x)$ pour tout x > 0, et comme Γ est continue en 1, on a $\lim_{x\to 0^+} \Gamma(x+1) = \Gamma(1) = 1$, donc

$$\Gamma(x) \sim_{x \to 0^+} \frac{1}{x}$$

Partie II:

$$\lambda > 0$$
, $\alpha \in \mathbb{R}$, $y_{\alpha}(x) = \sum_{n=0}^{+\infty} a_n x^{n+\alpha}$

1. $a_0 \neq 0$ et y_α est solution sur]0, R[de l'équation (F_λ) .

L'application $x \mapsto x^{\alpha}$ est de classe C^{∞} sur R_{+}^{*} et que $x\mapsto \sum a_nx^n$ est de classe C^∞ sur]0, R[(somme d'une série entière), donc y_{α} est de classe C^{∞} sur]0, R[(produit de fonctions de classes C^{∞}).

Par calculs:
$$y'_{\alpha}(x) = \alpha x^{\alpha-1} \sum_{n=0}^{\infty} a_n x^n + x^{\alpha} \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=0}^{\infty} (\alpha + n) a_n x^{\alpha+n-1}$$

$$y_{\alpha}''(x) = \sum_{n=1}^{\infty} (\alpha + n)(\alpha + n - 1)a_n x^{\alpha + n - 2}$$

Donc

$$y_{\alpha}$$
 est solution sur $]0, R[$ de (F_{λ}) $\Leftrightarrow \forall x \in]0, R[, -(x^{2} + \lambda) \sum_{n=0}^{\infty} a_{n}x^{n}]$

$$+ \sum_{n=0}^{\infty} (\alpha + n)a_{n}x^{\alpha+n} + \sum_{n=1}^{\infty} (\alpha + n)a_{n}x^{\alpha+n} + \sum_$$

 $\sum_{n=0}^{\infty} ((n+\alpha)^2 - \lambda^2) a_n x^n - \sum_{n=0}^{\infty} ((n+\alpha)^2 - \lambda^2) a_n x^n = \sum_{n=0}^{\infty} ((n+\alpha)^2 - \lambda^2) a_$

On fait tendre x vers 0^{+} , obtenir $\alpha^2 - \lambda^2 = 0$ car $a_0 \neq 0$ et puis $((\alpha + 1)^2 - \lambda^2)a_1 = 0$ et une recurrence $((\alpha + n)^2 - \lambda^2)a_1 = 0$ $^{2})a_{n}=a_{n-2}..$

2. $\alpha = \lambda$, $a_0 \neq 0$ et y_{λ} est solution sur]0, R[de (F_{λ}) .

MAMOUNI MY ISM

a. On a:
$$y_{\lambda}(x) = \sum_{n=0}^{\infty} a_n x^{\lambda+n} = x^{\lambda} \sum_{n=0}^{\infty} a_n x^n$$
. On sait que (1) $((\lambda + n)^2 - \lambda^2) a_n = a_{n-2}$ pour tout $n \ge 2$ Puisque . $(\lambda + 1)^2 - \lambda^2 \ne 0$, on a $a_1 = 0$ et par la relation (1), on a: $a_{2p+1} = 0$ pour tout $p \in \mathbb{N}$.et $a_{2p} = \frac{1}{(\lambda + 2p)^2 - \lambda^2} a_{2(p-1)}$ pour tout $p \in \mathbb{N}^*$. Donc $\prod_{k=1}^p a_{2k} = \prod_{k=1}^p \frac{1}{(\lambda + 2k)^2 - \lambda^2} \prod_{k=1}^p a_{2(k-1)} = \prod_{k=1}^p \frac{1}{(\lambda + 2k)^2 - \lambda^2} \prod_{k=0}^{p-1} a_{2k}$ soit : $a_{2p} = \prod_{k=1}^p \frac{1}{(\lambda + 2k)^2 - \lambda^2} a_0$. Mais $(\lambda + 2k)^2 - \lambda^2 = 4\lambda k + 4k^2 = 4k(\lambda + k)$, d'où $\prod_{k=1}^p \frac{1}{(\lambda + 2k)^2 - \lambda^2} = \prod_{k=1}^p \frac{1}{4k(\lambda + k)} = \frac{1}{4^p p!} \prod_{k=1}^p \frac{1}{\lambda + k} = \frac{1}{2^{2p} p!} \frac{\Gamma(\lambda + 1)}{\Gamma(\lambda + p + 1)}$. En conclusion : $\forall p \in \mathbb{N}$, $a_{2p} = \frac{a_0}{2^{2p} p!} \frac{\Gamma(\lambda + 1)}{\Gamma(\lambda + p + 1)}$

- b. Pour x > 0, on a: $\left| \frac{a_{2p} x^{2p}}{a_{2(p-1)} x^{2(p-1)}} \right| = \frac{a_{2p}}{a_{2(p-1)}} x^2 =$ $\frac{1}{(\lambda+2p)^2+\lambda^2}x^2 \underset{p\to+\infty}{\to} 0$, donc le rayon de convergence R est infini
- On suppose $a_0 2^{\lambda} \Gamma(\lambda + 1) = 1$.

On a:
$$\forall x > 0$$
, $y_{\lambda}(x) = \sum_{p=0}^{+\infty} a_{2p} x^{2p+\lambda}$

$$= \sum_{p=0}^{+\infty} \frac{a_0}{2^{2p} p!} \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+p+1)} x^{2p+\lambda}$$

$$= \sum_{p=0}^{+\infty} \frac{a_0}{p!} \frac{\Gamma(\lambda+1)}{\Gamma(\lambda+p+1)} (\frac{x}{2})^{2p+\lambda} 2^{\lambda}$$

$$= \sum_{p=0}^{+\infty} \frac{1}{p!} \frac{1}{\Gamma(\lambda+p+1)} (\frac{x}{2})^{2p+\lambda} \operatorname{car} a_0 2^{\lambda} \Gamma$$

Equivalent au voisinage de 0 :

D'après les propriétés des séries entières, on a :

$$\sum_{p=0}^{\infty} \frac{1}{p!} \frac{1}{\Gamma(\lambda+p+1)} \left(\frac{x}{2}\right)^{2p} \underset{x\to 0^+}{\sim} \frac{1}{\Gamma(\lambda+1)}$$

Donc

$$y_{\lambda}(x) \underset{x \to 0^{+}}{\sim} \frac{1}{\Gamma(\lambda+1)} (\frac{x}{2})^{\lambda}$$

- On suppose ici que $2\lambda \notin \mathbb{N}$.
 - D'après la question 1 et 2) la fonction $y_{-\lambda}$ est aussi solution sur R^*_+ de (F_λ) .
 - Montrons $(y_{\lambda}, y_{-\lambda})$ est un système fondamental de solutions sur R_+^* de (F_{λ}) .

Soit $(\alpha, \beta) \in \mathbb{R}^2$ tel que $\alpha y_{\lambda} + \beta y_{-\lambda} = 0$.

Comme
$$y_{\lambda}(x) \sim \frac{1}{\Gamma(\lambda+1)} (\frac{x}{2})^{\lambda}$$
 et $y_{-\lambda}(x) \sim x \to 0^{+}$ $\frac{1}{\Gamma(-\lambda+1)} (\frac{x}{2})^{-\lambda}$, on a $: y_{\lambda}(x) \to 0$ et $y_{-\lambda}(x) \to x \to 0^{+}$ $+\infty$, donc si l'on suppose $\alpha \neq 0$, alors en faisant tendre x vers 0 , on aboutit à une contradiction.

MAMOUNI.NEW.FR

PROBLÈMES CORRIGÉS-MP

On conclut que $\alpha = 0$ et puis $\beta = 0$, donc les solutions y_{λ} et $y_{-\lambda}$ sont linéairement indépendantes.

 (F_{λ}) est une équation différentielle linéaire du second ordre à coefficients continus et sans second membre, son ensemble de solutions est donc un espace vectoriel réel de dimension deux. En conséquence : $(y_{\lambda}, y_{-\lambda})$ est un système fondamental de solutions de (F_{λ}) et que toute solution sur \mathbb{R}_+^* de (F_{λ}) est de la forme :

$$y = \alpha y_{\lambda} + \beta y_{-\lambda}$$
 où $\alpha, \beta \in R$

Partie III.

A- Etude de (F_0) :

Pour x > 0, on $a : y_{\lambda}(x) = \sum_{n=0}^{\infty} \frac{1}{(2^{p} p!)^{2}} x^{2p}$.

1. .

Pour tout entier $k \ge 1$: $\prod a_{2k}(\alpha) =$ $\prod_{k=1}^{p} \frac{1}{(\alpha+2k)^2} \prod_{k=1}^{p} a_{2(k-1)}, \operatorname{donc} a_{2p}(\alpha) = \prod_{k=1}^{p} \frac{1}{(\alpha+2k)^2} a_0(\alpha).$ Or $a_0(\alpha) = 1$, d'où la formule cherchée

$$a_{2p}(\alpha) = \prod_{k=1}^{p} \frac{1}{(\alpha + 2k)^2}$$
 pour tout $p \ge 1$.

D'après les notations de l'enoncé, pour tout $p \in N^*$, on a: $a_{2p}(\alpha) = \exp(\sum_{k=1}^{p} \ln(\frac{1}{(\alpha + 2k)^2})) = \exp(-2\sum_{k=1}^{p} \ln(\alpha + 2k)^2)$

$$2k)), \text{ donc}: a'_{2p}(\alpha) = -\sum_{k=1}^{p} \frac{2}{\alpha + 2k} a_{2p}(\alpha) \text{ et puis}$$

$$a'_{2p}(0) = -2\sum_{k=1}^{p} \frac{1}{2k} a_{2p}(0)$$

$$= -\sum_{k=1}^{p} \frac{1}{k} a_{2p}(0)$$

$$= -H_{p}.a_{2p}(0)$$
Or $a_{2p}(0) = \prod_{k=1}^{p} \frac{1}{(2k)^2} = \frac{1}{2^{2p}(p!)^2} = \left(\frac{1}{2^p p!}\right)^2$, donc:
$$b_p = a'_{2p}(0) = -\left(\frac{1}{2^p n!}\right)^2 H_p$$

Calcul du rayon de convergence R_h : On a $b_p \sim -\frac{1}{(2^p p!)^2} \ln(p) = o(\frac{1}{2^p p!}) \operatorname{car} H_p \sim \ln(p),$ donc le rayon de convergence de la série entière $\sum b_p x^p$ est infini:

$$R_h = +\infty$$

Pour tout $p \in \mathbb{N}^*$, on a: $(2p)^2 b_p + 4pa_{2p}(0) = -(2p)^2 a_{2p}(0)$ $= a_{2p}(0) \left(-(2p) \right)$

Mais
$$(2p)^2 a_{2p}(0) = a_{2(p-1)}(0)$$
, donc:
 $(2p)^2 b_p + 4p a_{2p}(0) = -a_{2p}(0) H_p + 4p a_{2p}(0)$
 $= -a_{2(p-1)}(0) H_{p-1} - \frac{1}{p} a_{2(p-1)}(0) + 4p a_{2p}(0)$

D'où le résultat demandé.

L'application $x \mapsto y_0(x) \ln(x)$ est de classe C^{∞} sur \mathbb{R}_+^* Opérations), donc z_0 est de classe C^{∞} sur \mathbb{R}_{+}^{*} . Pour tout x > 0, on a:

$$z_0(x) = y_0(x) \ln(x) + \sum_{p=1}^{\infty} b_p x^{2p}$$

$$z_0'(x) = \frac{1}{x} y_0(x) + \ln(x) \cdot y_0'(x) + 2 \sum_{p=1}^{\infty} p b_p x^{2p-1}$$

$$z_0''(x) = -\frac{1}{x^2} y_0(x) + \frac{2}{x} y_0'(x) + \ln(x) \cdot y_0''(x) + 2 \sum_{p=1}^{\infty} p(2p-1) b_p x^{2p-2}$$

Donc
$$x^2 z_0''(x) + x z_0'(x) - (x^2 + 0)z_0(x) = -y_0(x) + 2xy_0'(x)$$

En tenant compte du fait que y_0 est solution sur \mathbb{R}_+^* de (F_0) et de la question précédente, il vient :

$$x^{2}z_{0}''(x) + xz_{0}'(x) - (x^{2} + 0)z_{0}(x) = 2xy_{0}'(x) + \sum_{p=1}^{\infty} b_{p}(2p)^{2}x^{2p} - \sum_{p=1}^{\infty} 4pa_{2p}(0)x^{2p} + \sum_{p=1}^{\infty} b_{p}(2p)^{2}x^{2p} - \sum_{p=1}^{\infty} 4pa_{2p}(0)x^{2p} + \sum_{p=1}^{\infty} b_{p}(2p)^{2}x^{2p} - \sum_{p=1}^{\infty} b_{p-1}x^{2p} - \sum_{p=1}^{\infty} b_{p-1}$$

 $= b_0 x^2 = 0$

Ce qui permet de conclure.

3. Comme $y_0(x) \sim \frac{1}{\Gamma(0+1)} (\frac{x}{2})^0 = 1$, $\lim_{x \to 0} \sum_{p=1}^{\infty} b_p x^{2p} = 0$ et $\lim \ln(x) = -\infty$, on a:

$$z_0(x) \sim \ln(x)$$

ceci permet de prouver (comme à la question II 3.b) que les solutions y_0 et z_0 sur \mathbb{R}_+^* de (F_0) sont linéairement indépendantes .et avec les mêmes raisons que dans III.3b), toute so-Donc $x^2z_0''(x) + xz_0'(x) - (x^2 + 0)z_0(x) = -y_0(x) + 2xy_0'(x) + \ln(x) + x_0^2y_0''(x) +$

$$+y_0(x) + \ln(x) \cdot xy_0(x) + \sum_{p=1}^{\infty} b_p x^2 y^{\frac{1}{2}p}$$

$$-x^2 \ln(x) y_0(x) - \sum_{p=1}^{\infty} b_p x^2 y^{\frac{1}{2}} \text{ fout } p \in \mathbb{N}^*, \text{ on a : } c_{2p}(\alpha) = \frac{1}{(\alpha + 2p)^2 - 1} c_{2(p-1)}$$

$$\text{r } \mathbb{R}_+^* \text{ de }$$

$$\text{, donc } \prod_{k=1}^p c_{2k}(\alpha) = \prod_{k=1}^p \frac{1}{(\alpha + 2k)^2 - 1} \prod_{k=1}^p c_{2(k-1)} \text{ et par }$$

MAMOUNI.NEW.FR MAMOUNI MY ISMAIL

PROBLÈMES CORRIGÉS-MP

suite
$$c_{2p}(\alpha) = \prod_{k=1}^{p} \frac{1}{(\alpha + 2k)^2 - 1} c_0(\alpha)$$
.

et comme $c_0(\alpha) = 1$, on déduite que :

$$c_{2p}(\alpha) = \prod_{k=1}^{p} \frac{1}{(\alpha + 2k)^2 - 1}$$

b. Pour tout
$$p \in \mathbb{N}^*$$
, $d_p = \frac{d}{d\alpha}c_{2p}(1)$. Comme $c_{2p}(\alpha) = \exp(-\sum_{k=1}^p \ln((\alpha+2k)^2-1))$, on $a:c_{2p}'(\alpha) = -\sum_{k=1}^p \frac{2(\alpha+2k)}{(\alpha+2k)^2-1}c_{2p}(\alpha)$. D'où $d_p = -\sum_{k=1}^p \frac{2(1+2k)}{(1+2k)^2-1}\prod_{k=1}^p \frac{1}{(\alpha+2k)^2-1} = -\sum_{k=1}^p \frac{2(1+2k)}{(1+2k)^2-1}\prod_{k=1}^p \frac{1}{(\alpha+2k)^2-1}$

$$d_{p} = -\sum_{k=1}^{p} \frac{(1+2k)^{2}-1}{(1+2k)^{2}-1} \prod_{k=1}^{p} \frac{(\alpha+2k)^{2}-1}{(\alpha+2k)^{2}-1} - \sum_{k=1}^{p} \frac{2(1+2k)}{4k(1+k)} \prod_{k=1}^{p} \frac{1}{(1+2k)^{2}-1}.$$

Or
$$\prod_{k=1}^{p} \frac{1}{(1+2k)^2 - 1} = \prod_{k=1}^{p} \frac{1}{4k(1+k)} = \frac{1}{2^{2p}} \prod_{k=1}^{p} \frac{1}{k(1+k)} = \frac{1}{2^{2p}} \frac{1}{p!} \frac{1}{(p+1)!}$$

$$\frac{2(1+2k)}{4k(k+1)} = \frac{1}{k} - \frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{2}(\frac{1}{k} - \frac{1}{k+1}) = \frac{1}{2}(\frac{1}{k} + \frac{1}{k+1})$$

donc
$$\sum_{k=1}^{p} \frac{2(1+2k)}{4k(k+1)} = \frac{1}{2}(H_p + H_{p+1} - 1)$$
. D'où le résultat

demandé:

$$d_p = \frac{1}{2^{2p+1}p!(p+1)}(H_p + H_{p+1} - 1)$$

c. On a:

$$d_{p} = \frac{1}{2^{2p+1}p!(p+1)}(H_{p} + H_{p+1} - 1) = \frac{1}{2^{2p+1}p!(p+1)!}(2H_{p} + \frac{1}{p+1} - 1) \sim \frac{1}{p \to \infty} \frac{1}{2^{2p}} \frac{1}{p!(p+1)!} \ln(p),$$
donc le rayon de convergence demandé :
$$R_{d} = +\infty$$

۷.

a. On a: Pour tout $p \in \mathbb{N}^*$, $((1+2p)^2-1)d_p+2(1+2p)c_{2p}(1)=d_{p-1}$. En effet:

par dérivation de l'identité $c_{2p}(\alpha)\left((1+2p)^2-1\right)=\frac{1}{(2(p-1))!}$ $c_{2(p-1)}(\alpha)$, on a: $c'_{2p}(\alpha)\left((\alpha+2p)^2-1\right)+2(\alpha+2p)c_{2p}(\alpha)=c'_{2(p-1)}(\alpha)$ Pour $\alpha=1$, on a: $d_p((1+2p)^2-1)+2(1+2p)c_{2p}(1)=d_{p-1}$

b. Il est clair que les fonctions y_1 et $x \mapsto \sum_{p=1}^{\infty} d_p x^{2p+1}$ sont de classe C^{∞} sur \mathbb{R}_+^* et par dérivation on obtient pout tout x > 0:

MAMOUNI.NEW.FR MAMOUNI MY ISMAIL

$$x^{2}u_{1}''(x) + xu_{1}'(x) - (1+x^{2})u_{1}(x) = x^{2} \left(2y_{1}'(x)\ln(x) + \frac{4}{x}y_{1}'(x) - \frac{2}{x^{2}}y_{1}(x^{2})y_{1}''(\sum_{p=1}^{\infty} \frac{1}{2}p(x^{2})y_{1}'(x) + \sum_{p=0}^{\infty} (2p+1)^{2}d_{p}x^{2})\right)u_{1}(x) = 4xy_{1}'(x) + \sum_{p=0}^{\infty} (2p+1)^{2}d_{p}x^{2} +$$

On déduit alors que u_1 est bien solution sur \mathbb{R}_+^* de (E_1)

3. .

a. On pose
$$u_1(x) = \frac{e_0}{x} + \sum_{p=1}^{\infty} e_p x^{p-1}$$
 avec $R = Rcv(\sum_{p\geqslant 1} e_p x^{p-1}) > 0$.
Sur $]0, R[$, on a: $x^2 u_1''(x) + x u_1'(x) - (1 + x^2) u_1(x) - 2x = x^2 \left(\frac{2e_0}{x^3} + \sum_{p=1}^{\infty} (p-1)(p-2)e_p x^{p-2}\right) + 2x$

MAMOUNI MY ISMAIL

PROBLÈMES CORRIGÉS-MP

$$x\left(\frac{-e_0}{x^2}+\sum_{p=1}^{\infty}(p-1)e_px^{p-2}\right)-2x=\sum_{p=0}^{\infty}(p(p-1)e_p-e_{p-2})x^{p-1}-(e_0+2)x-e_1=0.$$
 comme dans la question, on déduit :
$$\begin{cases} e_0=-2\\ e_1=0\\ \forall p\geqslant 3, p(p-2)e_p-e_{p-1}=0 \end{cases}$$
 qui permet de conclure par une récurrence que : $\forall p\in N, e_{2p+1}=0$ et $e_{2p}=\frac{e_0}{2^{2p}p!(p+1)!=-2c_{2p}(1)}$ car $e_0=-2$ et par suite R est infini et que u_1 est solution sur \mathbb{R}_+^* de (E_1) .

- (F_1) est une équation différentielle linéaire sans second membre associée à (E_1) et comme z_1 et u_1 sont solutions sur \mathbb{R}_+^* de (E_1) , il en résulte que $z_1 - u_1$ est solution sur \mathbb{R}_+^* de (F_1) .
- Comme dans la question...., en étudiant le comportement des solutions z_1 et y_1 au voisinage de 0^+ , on déduit que (y_1, z_1) est système fondamental de solutions sur \mathbb{R}_+^* de (F_1) , donc toute solution sur \mathbb{R}_+^* de (F_1) est de la forme : $y: x \mapsto$ $\alpha y_1(x) + \beta z_1(x)$ où α et β sont des constantes réelles arbitraires.