CPGE My Youssef, Rabat

DL 12 Bis (09-10): Séries entieres

8 février 2010

Blague du jour:

- Comment appelle t-on un chien sans pattes? On ne l'appelle pas, on va le chercher!
- Un vieux rat rencontre une petite taupe. Curieux, il lui demande :
- Que veux-tu faire plus tard, ma petite?
- Taupe-modèle!!

Mathématicien du jour

Littlewood

John Edensor Littlewood (1885-1977) était un mathématicien anglais. Il a surtout travaillé en analyse sur le sujet des fonctions entières. Il a collaboré pendant de nombreuses années avec Hardy et ils ont formulé ensemble deux conjectures. Il a aussi travaillé sur la théorie de Fourier. Il est lauréat de la Médaille Sylvester, de la Royal Medal et de la médaille Copley en 1958.

PROBLÉME: Source: Concours CCP-MP, 2005.

Autour du théorème d'ABEL pour les séries entières

Dans tout le problème :

 $(a_n)_{n\in\mathbb{N}}$ est une suite de nombres réels telle que la série entière $\sum a_n x^n$ de la variable réelle x ait pour rayon de convergence 1.

On désigne alors par $\sum a_n$ la série de terme général a_n et par f la fonction définie sur

1'intervalle]-1, 1[par : $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

On désigne par (P_1) et (P_2) les deux propriétés suivantes possibles de la suite (a_n) :

 (\mathcal{P}_1) : la série $\sum a_n$ converge.

 (\mathcal{P}_2) : la fonction f admet une limite finie, notée $\lim_{x\to 1^-} f(x)$, lorsque x tend vers 1 par valeurs inférieures.

GÉNÉRALITÉS

- En utilisant des développements en série entière « usuels », donner dans chaque cas, un exemple de suite (a_n) telle que :
 - **a.** (a_n) vérifie (\mathcal{P}_1) et (\mathcal{P}_2) ;
 - **b.** (a_n) ne vérifie pas (\mathcal{P}_1) et vérifie (\mathcal{P}_2) ;
 - **c.** (a_n) ne vérifie ni (\mathcal{P}_1) ni (\mathcal{P}_2) ;
 - **d.** La série $\sum a_n x^n$ ne converge pas uniformément sur l'intervalle]-1, 1[(justifier).
- 2. On suppose que la série $\sum a_n$ est absolument convergente; montrer alors que la fonction fadmet une limite finie lorsque x tend vers 1 par valeurs inférieures et que $\lim_{x\to 1^-} f(x) = \sum_{n=0}^{+\infty} a_n$.
- **3.** Exemple

Déduire de la question précédente la somme de la série $\sum_{n=0}^{\infty} \frac{(-1)^n}{n(n-1)}$

(on pourra utiliser une décomposition en éléments simples).

II. THÉORÈME D'ABEL

On suppose dans cette question que la série $\sum a_n$ converge.

On va montrer qu'alors la fonction f admet une limite finie lorsque x tend vers 1 par valeurs inférieures (théorème d'Abel).

On pose $r_n = \sum_{k=n+1}^{+\infty} a_k$ et pour tout $x \in [0,1]$, $R_n(x) = \sum_{k=n+1}^{+\infty} a_k x^k$.

- **a.** Simplifier, pour tout $x \in [0,1]$, $\sum_{n=1}^{+\infty} (r_{n+p-1} r_{n+p}) x^{n+p}$.
- **b.** En déduire que, pour tout $x \in [0, 1[, R_n(x) = r_n x^{n+1} + x^{n+1}(x-1)\sum_{n=1}^{+\infty} r_{n+p} x^{p-1}]$.
- c. Soit un réel $\varepsilon > 0$, justifier qu'il existe un entier n_0 tel que pour tout entier $n \ge n_0$ et tout entier naturel p on ait $|r_{n+p}| \le \frac{\varepsilon}{2}$, puis que : pour tout entier $n \ge n_0$ et pour tout réel $x \in [0, 1], |R_n(x)| \le \varepsilon$.
- d. Conclure que la fonction f admet une limite lorsque x tend vers 1 par valeurs inférieures et que $\lim_{x \to 1^{-}} f(x) = \sum_{n=0}^{\infty} a_n$.
- 5. Que peut-on dire de la série $\sum a_n$ si $\lim_{x\to 1^-} f(x) = +\infty$?
- **6.** Exemple Retrouver le développement en série entière en 0 de la fonction $x \mapsto \arctan x$ puis utiliser le théorème d'Abel pour écrire $\frac{\pi}{4}$ comme somme d'une série numérique.

7. Application

- On rappelle que le produit de Cauchy de deux séries absolument convergentes est une série absolument convergente.
 - a. Le produit de Cauchy de deux séries convergentes est-elle une série convergente ?

(On pourra examiner le cas $u_n = v_n = \frac{(-1)^n}{\frac{1}{n^{\frac{1}{4}}}}$ pour $n \ge 1$).

b. Soit $\sum_{n=0}^{\infty} u_n$, $\sum_{n=0}^{\infty} v_n$ deux séries de nombres réels, on pose pour n entier naturel, $w_n = \sum_{k=0}^{\infty} u_k v_{n-k}$ et on suppose que les trois séries $\sum_{n=0}^{\infty} u_n$, $\sum_{n=0}^{\infty} v_n$ et $\sum_{n=0}^{\infty} w_n$ convergent. Montrer, à l'aide du théorème d'Abel, qu'alors $\sum_{n=0}^{\infty} w_n = \sum_{n=0}^{\infty} u_n \sum_{n=0}^{\infty} v_n$.

III. RÉCIPROQUE DU THÉORÈME D'ABEL

8. Justifier que la réciproque du théorème d'Abel est fausse.

On cherche à rajouter une condition (Q) à la condition (P_2) de telle sorte que si (a_n) vérifie (P_2) et (Q), alors elle vérifie (P_1) .

9. On prend pour (Q) la propriété : pour tout entier n, $a_n \ge 0$.

Montrer que si (a_n) vérifie les propriétés (\mathcal{P}_2) et (Q), alors elle vérifie la propriété (\mathcal{P}_1)

(on pourra montrer que
$$\sum_{k=0}^{n} a_k \le \lim_{x \to 1^{-}} f(x)$$
).

Si on prend pour (Q) la propriété:

la suite (a_n) vérifie $a_n = O\left(\frac{1}{n}\right)$ (la suite (a_n) est dominée par la suite $\left(\frac{1}{n}\right)$ au voisinage de $+\infty$),

on obtient le **théorème de Littlewood** dont on admettra la démonstration pour l'appliquer dans la partie suivante.

IV. SÉRIES HARMONIQUES TRANSFORMÉES

Désormais, on admet et on pourra utiliser le théorème de Littlewood :

si la fonction f admet une limite finie lorsque x tend vers 1 par valeurs inférieures et que $a_n = O\left(\frac{1}{n}\right)$ alors la série $\sum a_n$ converge.

Pour p entier naturel non nul, on considère une suite $(\varepsilon_n)_{n\geq 1}$ périodique de période p formée d'éléments de l'ensemble $\{-1, 1\}$.

10. Donner, en justifiant leur valeur, les rayons de convergence des séries entières $\sum_{n>1} \varepsilon_n x^{n-1}$ et

$$\sum_{n\geq 1}\frac{\varepsilon_n}{n}x^n.$$

On pose, pour
$$x \in]-1, 1[: f(x) = \sum_{n=1}^{+\infty} \frac{\varepsilon_n}{n} x^n \text{ et } g(x) = \sum_{n=1}^{+\infty} \varepsilon_n x^{n-1}.$$

- **11.** Établir que la série $\sum_{n\geq 1} \frac{\varepsilon_n}{n}$ converge si et seulement si la fonction $f: x \mapsto \int_0^x g(t) dt$ admet une limite finie lorsque x tend vers 1 par valeurs inférieures.
- **12.** Montrer que g est une fraction rationnelle à déterminer.
- 13. Retrouver, uniquement par les deux questions précédentes, que la série harmonique $\sum_{n\geq 1} \frac{1}{n}$ diverge et que la série alternée $\sum_{n\geq 1} \frac{(-1)^n}{n}$ converge en précisant sa somme.
- 14. Déterminer une condition nécessaire et suffisante portant sur la somme $\sum_{i=1}^{p} \varepsilon_i$ pour que la série $\sum_{n\geq 1} \frac{\varepsilon_n}{n}$ converge.

Que peut-on en conclure dans les cas où la période p est un entier impair ?

15. Exemple

Dans le cas où la suite $(\varepsilon_n)_{n\geq 1}$ est périodique de période 6 avec $\varepsilon_1=1,\ \varepsilon_2=1,\ \varepsilon_3=1,\ \varepsilon_4=-1,\ \varepsilon_5=-1,\ \varepsilon_6=-1,$ déterminer $\sum_{n=1}^{+\infty}\frac{\varepsilon_n}{n}$ (il est demandé de détailler les calculs).

Fin À la prochaine