par M. TAIBI Lycée Moulay Youssef Rabat

Exercice 1:

- a. Soit $(x,y) \in \mathbb{R}^2$, on a: $(x,y) \in T \Leftrightarrow -1 \leqslant x \leqslant 1$ et $-x \leqslant y \leqslant 1$, donc: $\iint_T (x+y) dx dy = \int_{-1}^1 \left(\int_{-x}^1 (x+y) dy \right) dx = \int_{-1}^1 \left(\left(x + \frac{1}{2} + \frac{x^2}{2} \right) dx = \frac{4}{3}.$
- b. Posons T'=-T, et f(x,y)=|x+y| pour $(x,y)\in C$, alors $C=T\cup T'$, f est continue sur C et f(x,y)=0 si $(x,y)\in T\cap T'$, donc $=\iint_T f(x,y)dxdy+\iint_{T'} f(x,y)dxdy$. Avec le changement de variable $\varphi:T\to T'$, $(x,y)\mapsto (-x,-y)$ est un $\mathrm{C}^1-diff\acute{e}omorphisme$ de T sur T' de Jacobien 1, donc $\iint_{T'} f(x,y) dx dy = \iint_{T} f \circ \varphi(x,y) dx dy = \iint_{T} f(x,y) dx dy \text{ car } f \circ \varphi = f.$ En conclusion:

$$\iint_C f(x,y)dxdy = 2 \iint_T f(x,y)dxdy = 2\frac{4}{3} = \frac{8}{3}.$$

Exercice 2:

Soit l'équation différenielle linéaire du premier ordre, sans second membre : (E_n) xy' - ny = 0est un entier strictement positif.

- 1. Sur I (resp. J) l'équation différentielle (E_n) s'écrit : $y' \frac{n}{x}y = 0$ et la fonction $x \mapsto \frac{n}{x}$ est continue sur I (resp. sur J), ce qui montre que si $S_I(E_n)$ (resp. $S_J(E_n)$) désigne l'ensembles des solutions de (E_n) sur I (resp. sur J) alors $S_I(E_n)$ (resp. $S_J(E_n)$) est un espace vectoriel réel de dimension 1. L'application $x \mapsto x^n$ est solution de (E_n) sur I (resp sur J) donc : $S_I(E_n) = vect(I \to \mathbb{R} \ x \mapsto x^n)$ $(\text{resp} : S_J(E_n) = \text{vect}(J \to \mathbb{R} \ x \mapsto x^n))$.
- 2. Dans le cas où n=1, une solution y de (E_1) sur \mathbb{R} est aussi solution de (E_1) sur I et sur J, donc sa courbe est réunion de deux demi-droites, et comme y est C^1 , sa courbe est donc une droite. En conclusion : l'espace des solutions de (E_1) sur \mathbb{R} est de dimension 1, engendrée par la fonction
- 3. Supposons n>1, soit y une solution de (E_n) sur \mathbb{R} , alors il existe $(\alpha,\beta)\in\mathbb{R}^2$ tel que y(x)=1 $\begin{cases} \alpha x^n & si \quad x \in I \\ \beta x^n & si \quad x \in J \end{cases}$ (voir question 1.) et donc y(0) = 0

Réciproquement : toute fonction y définie sur \mathbb{R} par : $y(x) = \begin{cases} \alpha x^n & si \ x \in I \\ \beta x^n & si \ x \in J \end{cases}$ avec y(0) = 0, alors y est continue sur \mathbb{R} car n > 1 et de classe \mathbb{C}^1 sur $\mathbb{R} \setminus \{0\}$ avec $\lim_{\substack{x \to 0 \\ x \neq 0}} y'(x) = 0$, donc le théorème de

prologment de la dérivée, montre que y est C^1 sur R avec y'(0) = 0 et y vérifie l'équation différentielle (E_n) .

Conclusion : l'ensemble des solutions de (E_n) est un espace vectoriel de dimesion 2, engendré par les fontions : $h_n: x \mapsto \begin{cases} x^n & si \ x \geqslant 0 \\ 0 & si \ x < 0 \end{cases}$ et $g_n: x \mapsto \begin{cases} x^n & si \ x < 0 \\ 0 & si \ x \geqslant 0 \end{cases}$

Problème Autour du théorème d'Abel pour les séries entières.

I. Généralités

1. Exemples

a. Exemple de suite (a_n) vérifiant (\mathcal{P}_1) et (\mathcal{P}_2) : Soit (a_n) telle que $a_n=0$ et $a_n=\frac{(-1)^{n-1}}{n}$ pour $n\in\mathbb{N}^*$ alors (a_n) verifie (\mathcal{P}_1) car la série harmonique alternée $\sum a_n$ converge et vérifie (\mathcal{P}_2) car $f(x) = \sum_{n=0}^{+\infty} a_n x^n = \ln(1+x)$ pour |x| < 1et $\lim_{x \to 1^{-}} f(x) = \ln(2)$.

b. Exemple de suite (a_n) qui ne vérifie pas (\mathcal{P}_1) et vérifie (\mathcal{P}_2) :

la suite (a_n) telle que : $a_n = (-1)^n$ ne vérifie pas (\mathcal{P}_1) car $\sum a_n$ diverge et elle vérifie (\mathcal{P}_2) car $f(x) = \sum_{n=0}^{+\infty} a_n x^n = \frac{1}{1+x}$ pour |x| < 1 et donc $\lim_{x \to 1^-} f(x) = \frac{1}{2}$.

- c. Exemple de suite (a_n) qui ne vérifie ni (\mathcal{P}_1) ni (\mathcal{P}_2) :
 la suite (a_n) telle que $:a_0=0$ et $a_n=\frac{1}{n}$ pour $n\in\mathbb{N}^*$, ne vérifie pas (\mathcal{P}_1) car $\sum a_n$ diverge (série harmonique) et elle ne vérifie pas (\mathcal{P}_2) car $f(x)=\sum_{n=0}^{+\infty}a_nx^n=-\ln(1-x)$ pour |x|<1 et $\lim_{x\to 1^-}f(x)=+\infty$.
- d. Dans l'exemple c. la série entière $\sum a_n x^n$ est de rayon de convergence 1 et ne converge pas uniformément sur]-1,1[, en effet si la série entière converge uniformément sur]-1,1[, alors par $\lim_{x\to 1^-}a_nx^n=a_n=\frac{1}{n}$ pour tout $n\in\mathbb{N}^*$, et on aura la série $\sum a_n$ converge ce qui n'est pas possible . Donc la converge de la série entière $\sum a_nx^n$ ne peut-être uniforme .
- 2. On suppose que la série numérique $\sum a_n$ est absolument convergente. Soit $f_n: x \to a_n x^n$, alors par : $\forall x \in [0,1[,|f_n(x)| \leqslant |a_n| \text{ et que } \sum |a_n| \text{ converge, on a } \sum f_n \text{ converge normalement, donc uniformément sur } [0,1[\text{ et puisque } \lim_{x\to 1^-} f_n(x) = a_n \text{ pour tout } n \in \mathbb{N} \text{ , il en résulte que } \lim_{x\to 1^-} f(x) \text{ exsite dans } \mathbb{R} \text{ et } \lim_{x\to 1^-} f(x) = \sum_{n=0}^{+\infty} a_n$.
- 3. Exemple:

Si l'on pose $a_n = \frac{(-1)^n}{n(n-1)}$, pour n > 1, on a alors $\sum a_n$ converge absolument $(|a_n| \sim \frac{1}{n^2})$ et

par la question précédente, $\lim_{x\to 1^-} f(x)$ existe et vaut $\sum_{n=2}^{+\infty} a_n$.

Or
$$a_n = \frac{(-1)^n}{n(n-1)} = \frac{(-1)^n}{n-1} - \frac{(-1)^n}{n} = \frac{(-1)^{n-2}}{n-1} + \frac{(-1)^{n-1}}{n}$$
, donc, pour $x \in]0,1[$

$$f(x) = \sum_{n=2}^{+\infty} a_n x^n = \sum_{n=2}^{+\infty} \frac{(-1)^{n-2}}{n-1} x^n + \sum_{n=2}^{+\infty} \frac{(-1)^{n-1}}{n} x^n$$

$$= (x+1) \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^n - x$$

$$= (x+1) \ln(1+x) - x$$

et donc $\lim_{x\to 1} f(x) = 2\ln(2) - 1$ et puis $\sum_{n=2}^{+\infty} a_n = 2\ln(2) - 1$

II. Théorème d'Abel

- 4. On suppose que la série $\sum a_n$ converge et on pose $r_n = \sum_{n=n+1}^{+\infty} a_k$ et pour $x \in [0;1], R_n(x) = \sum_{n=n+1}^{+\infty} a_k x^k$
 - a. On sait que $a_k = r_{k-1} r_k$ pour tout $k \ge 1$, donc, pour tout $n \in \mathbb{N}$ et tout entier $p \ge 1$, on a : $a_{n+p} = r_{n+p-1} r_{n+p}$ et puis $\sum_{p=1}^{+\infty} (r_{n+p-1} r_{n+p}) x^{n+p} = \sum_{p=1}^{+\infty} a_{n+p} x^{n+p} = \sum_{k=n+1}^{+\infty} a_k x^k = R_n(x)$.
 - b. Pour $x \in [0;1[$ et $m \in \mathbb{N}^*,$ tel que m > 2, on a :

$$\sum_{p=1}^{m} (r_{n+p-1} - r_{n+p}) x^{n+p} = \sum_{p=1}^{m} r_{n+p-1} x^{n+p} - \sum_{p=1}^{m} r_{n+p} x^{n+p}$$

$$= x \sum_{p=1}^{m} r_{n+p-1} x^{n+p-1} - \sum_{p=1}^{m} r_{n+p} x^{n+p}$$

$$= x r_n x^n + x \sum_{p=2}^{m} r_{n+p-1} x^{n+p-1} - \sum_{p=1}^{m} r_{n+p} x^{n+p}$$

$$= r_n x^{n+1} + x^{n+1} (x-1) \sum_{p=1}^{m-1} r_{n+p} x^{p-1} + r_{n+m} x^{n+m}$$

et comme la suite $(x_{n+m})_m$ est bornée, que $r_{n+m} \underset{m \to +\infty}{\longrightarrow} 0$, et que $\lim_{m \to \infty} \sum_{n=1}^m (r_{n+p-1} - r_{n+p}) x^{n+p} =$ $R_n(x)$, il en résulte que $\sum\limits_{n\geq 1}r_{n+p}x^{p-1}$ converge et que :

$$\sum_{p=1}^{\infty} (r_{n+p-1} - r_{n+p})x^{n+p} = r_n x^{n+1} + x^{n+1}(x-1) \sum_{p=1}^{\infty} r_{n+p} x^{p-1}$$

c. Soit $\varepsilon > 0$, comme $\lim r_n = 0$, (reste d'une série convergente), il existe $n_0 \in \mathbb{N}$ tel que : $|r_n| \leqslant \frac{\varepsilon}{2}$ pour tout entier $n \ge n_0$. Donc, pour tout entier naturel p et tout entier $n \ge n_0$, on a : $|r_{n+p}| \le \frac{\varepsilon}{2}$

Soit $x \in [0, 1[$ et $n \in \mathbb{N}$ tel que $n \ge n_0$, alors :

$$|R_n(x)| = \left| \sum_{p=1}^{+\infty} (r_{n+p-1} - r_{n+p}) x^{n+p} \right|$$

$$= \left| r_n x^{n+1} + x^{n+1} (x-1) \sum_{p=1}^{\infty} r_{n+p} x^{p-1} \right|$$

$$\leqslant |r_n| + (1-x) \sum_{p=1}^{\infty} |r_{n+p}| x^{p-1}$$

$$\leqslant \frac{\varepsilon}{2} + (1-x) \sum_{p=1}^{\infty} \frac{\varepsilon}{2} x^{p-1} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} (1-x) x \frac{1}{1-x}$$

$$\leqslant \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

pour x=1, on a $|R_n(1)|=|r_n|\leqslant \frac{\varepsilon}{2}$ dès que $n\geqslant n_0$. Conclusion : $\forall \varepsilon>0, \exists n_0\in\mathbb{N}; \forall n\in\mathbb{N} \ (n\geqslant n_0\Rightarrow \|R_n\|_{\infty,[0,1]}=\sup_{x\in[0,1]}|R_n(x)|\leqslant \varepsilon$).

- d. D'après la question précédente, la suite de fonctions $(R_n)_n$ converge unifomément vers la fonction nulle sur [0;1], donc la série entière $\sum a_n x^n$ converge uniformément vers f sur [0,1] et comme $x\mapsto a_nx^n$ est continue, il en résulte par le théorème de continuité de la limite uniforme, que $\lim_{x \to 1^{-}} f(x) = f(1) = \sum_{n=0}^{+\infty} a_n.$
- 5. On suppose que $\lim_{x\to 1^-} f(x) = +\infty$, on a alors $\sum a_n$ diverge car sinon, par 4.d), $\lim_{x\to 1^-} f(x)$ serait finie
- 6. Exemple:

$$\frac{d}{dx}\left(\arctan\right)(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n} \text{ pour } |x| < 1, \text{ et par intégration, on a : } \arctan(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} + C^{te} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \text{ car } \arctan(0) = 0. \text{ Donc : } \forall x \in]-1;1[; \arctan(x) = \sum_{n=0}^{\infty} a_n x^n \text{ avec } a_{2n} = 0 \text{ et } a_{2n+1} = \frac{(-1)^n}{2n+1}.$$
 La série $\sum a_n$ converge (série alternée varifiant le critère spécial). Par la question 4.), il en résulte

que $\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \lim_{x \to 1^-} \arctan(x) = \frac{\pi}{4}$.

En conclusion:

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

7. Application

a. Soient les suites $(u_n)_n$ et $(v_n)_n$ définies par : $u_0 = v_0 = 0$ et $u_n = v_n = \frac{(-1)^n}{n^{\frac{1}{4}}}$ pour $n \geqslant 1$. Posons $c_n = \sum_{k=0}^n u_k v_{n-k}$ pour $n \geqslant 0$, alors $c_0 = c_1 = 0$ et $c_n = \sum_{k=1}^{n-1} \frac{(-1)^k (-1)^{n-k}}{k^{\frac{1}{4}} (n-k)^{\frac{1}{4}}} = (-1)^n \sum_{k=1}^{n-1} \frac{1}{(k(n-k))^{\frac{1}{4}}}$ pour $n \geqslant 2$. Or pour $k \in [1, n-1]$, on a : $k(n-k) \leqslant \frac{n^2}{4}$, donc $|c_n| \geqslant \frac{n-1}{\left(\frac{n^2}{4}\right)^{\frac{1}{4}}} \xrightarrow{n \to +\infty} +\infty$ et par suite $\sum c_n$ divrege (car son terme général ne tend pas vers 0).

b. On considère les séries entières $\sum u_n x^n$, $\sum v_n x^n$ et $\sum w_n x^n$ associées rep. aus suites (u_n) , (v_n) et (w_n) . Commes les trois séries $\sum u_n$, $\sum v_n$ et $\sum w_n$ convergent, alors les rayons de convergence des séries entières associées sont au moins égaux à 1. Par le théorème d'Abel, on déuit : $\lim_{x\to 1^-}\sum_{n=0}^\infty u_n x^n = \sum_{n=0}^\infty u_n \;, \quad \lim_{x\to 1^-}\sum_{n=0}^\infty v_n x^n = \sum_{n=0}^\infty v_n \; \text{et } \lim_{x\to 1^-}\sum_{n=0}^\infty w_n x^n = \sum_{n=0}^\infty w_n \;.$ Or pour $x\in]0;1[$, les séries numériques $\sum u_n x^n$ et $\sum v_n x^n$ convergent absolument et que pour tout $n\in N, w_n x^n = \sum_{k=0}^n u_k x^k v_{n-k} x^{n-k}$, donc (d'après le cours sur le produit de Cauchy de deux séries entières) : $\sum_{n=0}^\infty w_n x^n = \sum_{n=0}^\infty u_n x^n \sum_{n=0}^\infty v_n x^n$, et par passage à la limte lorsque x tend vers 1 par valeurs inférieures, on obtient :

$$\sum_{n=0}^{\infty} w_n = \sum_{n=0}^{\infty} u_n \sum_{n=0}^{\infty} v_n$$

III. Réciproque du thérème d'Abel.

8. La réciproque du théorème d'Abel est fausse, il suffit de prendre la suite $(a_n = (-1)^n)$

9. Soit $(a_n)_n$ une suite de reéls positifs telle la série entière associée est de rayon de convergence égal à 1 et que $\lim_{x\to 1^-} f(x)$ existe dans \mathbb{R} . Pour $n\in\mathbb{N}$, posons $S_n=\sum_{k=0}^n a_k$.

Soit
$$x \in]0,1[$$
, et $n \in \mathbb{N}$, on a alors : $f(x) = \sum_{k=0}^{n} a_k x^k + \sum_{k=n+1}^{+\infty} a_k x^k \geqslant \sum_{k=0}^{n} a_k x^k$ (*). En faisant tendre x

vers 1, on obient : $S_n = \sum_{k=0}^n a_k \leqslant \lim_{x \to 1^-} f(x) < +\infty$.

Comme la série $\sum a_n$ est à termes positifs et que la suite des sommes partielles $(S_n)_n$ est majorée, on en déduit que $\sum a_n$ converge.

Dans la suite, on appliquera le théorème de Littlewood, sans démonstration .

IV. Séries harmoniques transformées

10. On rappelle que si $(a_n)_n$ est une suite numérique alors les séries entières $\sum a_n x^n$ et $\sum |a_n| x^n$ ont même rayon de convegence .Soit maintenant $(\varepsilon_n)_n$ une suite de réels tels que $\varepsilon_n \in \{-1; 1\}$ pour tout $n \in \mathbb{N}$, on a alors :

Rev
$$(\sum \varepsilon_n x^n)$$
 = $Rev(\sum x^n)$ = 1
et $Rev(\sum \frac{\varepsilon_n}{x} x^n)$ = $Rev(\sum \frac{1}{x} x^n)$ = 1

Dans la suite, pour $x \in]-1,1[, f(x) = \sum_{n=1}^{+\infty} \frac{\varepsilon_n}{n} x^n$ et $g(x) = \sum_{n=1}^{+\infty} \varepsilon_n x^n$. On remarque que $f(x) = \int_0^x g(t) dt$ pour tout $x \in]-1;1[$

11. Si $\sum \frac{\varepsilon_n}{n}$ converge, laors par le thorème d'Abel, $\lim_{x\to 1} f(x)$ existe dans R.

Réciproquement: Supposons que $\lim_{x\to 1^-} f(x)$ existe dans \mathbb{R} , puisque $\frac{\varepsilon_n}{n} = O(\frac{1}{n})$ car $|\varepsilon_n| = 1$, le théorème de Littlewood s'applique, on a donc $\sum \frac{\varepsilon_n}{n}$ converge et que $\lim_{x\to 1^-} f(x) = \sum_{n=1}^{\infty} \frac{\varepsilon_n}{n}$

12. Come $(\varepsilon_n)_n$ est périodique de période p, on alors pou $x \in]-1;1[$:

$$g(x) = \sum_{n=1}^{\infty} \varepsilon_n x^{n-1}$$

$$= \varepsilon_1 x^0 + \dots + \varepsilon_p x^{p-1} + \varepsilon_1 x^p + \dots + \varepsilon_p x^{2p-1} + \varepsilon_1 x^{2p} + \dots$$

$$= \varepsilon_1 \sum_{k=0}^{\infty} x^{kp} + \varepsilon_2 \sum_{k=0}^{\infty} x^{kp+1} + \dots + \varepsilon_p \sum_{k=0}^{\infty} x^{kp+p-1}$$

$$= \sum_{i=1}^{p} \varepsilon_i x^{i-1} \sum_{k=0}^{\infty} x^{kp}$$

$$= \sum_{i=1}^{p} \varepsilon_i x^{i-1}$$

$$= \frac{\sum_{i=1}^{p} \varepsilon_i x^{i-1}}{1 - x^p}$$

Donc l'expresion de g(x) est une fraction rationnelle en x.

13. On prend (ε_n) péridique de période 2 avec : $\varepsilon_1 = -1$ et $\varepsilon_2 = +1$ (ici p = 2), Donc $\varepsilon_n = (-1)^n$ pou tout $n \in \mathbb{N}^*$ et par la question 11. la série harmonique alternée $\sum \frac{(-1)^n}{n}$ converge et $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -1$

 $\lim_{x \to 1} f(x) = \lim_{x \to 1} \int_{0}^{x} g(t)dt \text{ Or, d'après la question 12.} : g(x) = \frac{\sum_{i=1}^{2} \varepsilon_{i} x^{i-1}}{1 - x^{2}} = \frac{-1}{1 - x^{2}} + \frac{x}{1 - x^{2}} = -\frac{1}{x + 1}$

pour tout $x \in]-1,1[$ et donc $f(x)=\int\limits_0^x g(t)dt=-\ln(1+x)$. Puisque $\lim\limits_{x\to 1}f(x)=-\ln(2),$ on en déduit que :

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -\ln(2)$$

On prend cette fois-ci $\varepsilon_n=1$, ((ε_n) est périodique de période p=1), alors $g(x)=\sum_{n=1}^\infty x^{n-1}=\frac{1}{1-x}$ et $f(x)=\int\limits_0^x g(t)dt=-\ln(1-x)$ et puisque $\lim\limits_{x\to 1^-}f(x)=+\infty$, alors $\sum\frac{1}{n}$ diverge.

14. D'après la question 12. g(x) est une fraction rationnelle en $x:g(x)=\frac{P(x)}{Q(x)}$ avec $P(x)=\sum_{k=1}^{p}\varepsilon_kx^{k-1}$ et

$$Q(x) = 1 - x^p = (1 - x) \sum_{k=0}^{p-1} x^k$$

On a $\sum \frac{\varepsilon_n}{n}$ converge si et seulement si $\lim_{x\to 1^-} f(x)$ existe dans R si et seulement si $\int_0^1 g(t)dt$ converge

On sait que g est continue sur [0,1[(somme d'une série entière) et qu'au voisinage de 1, on a :

$$Q(x) \sim p(1-x)$$
 et $\lim_{x\to 1} P(x) = P(1) = \sum_{k=1}^{p} \varepsilon_k$. Si $P(1) \neq 0$, alors $g(x) \underset{x\to 1}{\sim} \frac{P(1)}{p(1-x)}$ et $\int_{0}^{1} g(t)dt$ diverge.

Si $\sum_{k=1}^{p} \varepsilon_k = P(1) = 0$ alors $g(x) \sim \frac{P'(1)}{p}$ et g admet donc un prolongement par continuité en 1,

et donc $\int_{0}^{1} g(t)dt$ converge .

Conclusion : $\sum \frac{\varepsilon_n}{n}$ converge si et seulement si $\sum_{k=1}^p \varepsilon_k = 0$.

Si p est impair alors $\sum_{k=1}^{p} \varepsilon_k \neq 0$ car $\varepsilon_n \in \{-1; 1\}$ et par suite la série $\sum \frac{\varepsilon_n}{n}$ diverge .

15. Exemple:

Ici p = 6 avec $\varepsilon_1 = \varepsilon_2 = \varepsilon_3 = 1$ et $\varepsilon_4 = \varepsilon_5 = \varepsilon_6 = -1$, on a alors $P(1) = \sum_{k=1}^6 \varepsilon_k = 0$, et donc par la question 14. la série $\sum_{n=1}^{\infty} \frac{\varepsilon_n}{n}$ converge et $\sum_{n=1}^{\infty} \frac{\varepsilon_n}{n} = \lim_{x \to 1^-} \int_0^x g(t) dt$.

Or pour $x \in [0,1[$:

$$g(x) = \frac{P(x)}{Q(x)} = \frac{1 + x + x^2 - x^3 - x^4 - x^5}{1 - x^6}$$

$$= \frac{(x^2 + x + 1)(1 - x^3)}{(x^3 + 1)(1 - x^3)}$$

$$= \frac{x^2 + x + 1}{x^3 + 1}$$

$$= \frac{x^2 + x + 1}{(x + 1)(1 - x + x^2)}$$

$$= \frac{1}{1 - x + x^2} + \frac{x^2}{1 + x^3}$$

puisque :

$$\int_{0}^{x} \frac{1}{1-t+t^{2}} dt \stackrel{u=2t-1}{=} \int_{-1}^{2x-1} \frac{1}{\frac{3}{4} + \frac{1}{4}u^{2}} \frac{1}{2} du = \int_{-1}^{2x-1} \frac{2}{3+u^{2}} du
= \frac{2\sqrt{3}}{3} \arctan(\frac{\sqrt{3}}{3}(2x-1)) - \frac{2\sqrt{3}}{3} \arctan(-\frac{\sqrt{3}}{3})
= \frac{2\sqrt{3}}{3} \arctan(\frac{\sqrt{3}}{3}(2x-1)) + \frac{2\sqrt{3}}{3} \arctan(\frac{\sqrt{3}}{3})$$

et $\int_0^x \frac{t^2}{1+t^3} dt = \frac{1}{3} \int_0^x \frac{d(1+t^3)}{1+t^3} = \frac{1}{3} \ln(1+x^3)$, on a $f(x) = \frac{2\sqrt{3}}{3} \arctan(\frac{\sqrt{3}}{3}(2x-1)) + \frac{2\sqrt{3}}{3} \arctan(\frac{\sqrt{3}}{3}) + \frac{2\sqrt{3}}{3} \arctan(\frac{\sqrt{3}}{3}(2x-1)) = \frac{1}{3} \ln(1+x^3)$

 $\frac{1}{3}\ln(1+x^3)$ pour tout $x \in [0,1[$ et puis $\lim_{x\to 1^-} f(x) = \frac{4}{3}\sqrt{3}\arctan(\frac{\sqrt{3}}{3}) + \frac{1}{3}\ln(2) = \frac{2}{9}\sqrt{3}\pi + \frac{1}{3}\ln 2$, Conclusion :

$$\sum_{n=1}^{+\infty} \frac{\varepsilon_n}{n} = \frac{4}{3} \sqrt{3} \arctan(\frac{\sqrt{3}}{3}) + \frac{1}{3} \ln(2) = \frac{2}{9} \sqrt{3}\pi + \frac{1}{3} \ln 2$$
