

PROBLÈMES CORRIGÉS MP

Devoir Surveillé (4h)

Un procédé de sommation

LUNDI 3 DÉCEMBRE 2012

Blague du jour

Salon de l'auto : Comment reconnaître les nationalités des visiteurs du Mondial de l'Automobile?

- L'Allemand examine le moteur
- L'Anglais examine le cuir
- Le Grec examine l'échappement
- L'Italien examine le Klaxon

Jacques Salomon Hadamard (1865-1963)

Mathématicien français, connu pour ses travaux en théorie des nombres et en cryptologie. Il entra premier à l'école normale supérieure. C'est Émile Picard qui dirigea ses travaux de recherches.

Son nom est lié à la suite de matrices (H_{2k}) utilisées dans les codes correcteurs, ou encore pour réaliser les plans d'analyse sensorielle et les plans d'expériences factoriels.

▶ Problème I : CCP 2006, PSI

Etude d'un procédé de sommation

-\(\frac{1}{9}\)-Objectifs.

3 Dans les parties I et II, on étudie un procédé de sommation, la partie III est consacrée à l'étude de diverses fonctions et en particulier à une fonction à laquelle on applique ledit procédé ≶ de sommation.

Notations. Pour $z \in \mathbb{C}$, on note |z| son module, et pour tout entier naturel n, on note:

- ① n! la factorielle de n avec la convention 0! = 1,
- ② [0, n] l'ensemble des entiers naturels k vérifiant $0 \le k \le n$,

PROBLÈMES CORRIGÉS-MP

 $\binom{n}{k}$ le nombre de parties ayant k élément d'un ensemble de n éléments, pour $k \in [|0, n|]$.

On rappelle:

- ① la valeur de $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ pour $k \in [|0,n|]$,
- 2 la formule du binôme : si z_1 et z_2 sont des nombres complexes et n un entier naturel, alors

$$(z_1 + z_2)^n = \sum_{k=0}^n \binom{n}{k} z_1^k z_2^{n-k}$$

Enfin, si *n* est un entier naturel non nul, on note σ_n la somme $\sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n} \text{ et on pose } \sigma_0 = 0.$

Dans les parties *I* et *II* les notations utilisées sont les suivantes. Toute application de \mathbb{N} dans \mathbb{C} étant une suite complexe, si a est une telle suite, on utilise la notation usuelle $a(n) = a_n$.

A toute suite complexe a, on associee la suite a^* définie par :

$$\forall n \in \mathbb{N}, \ a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k$$

L'objet des parties I et II est de comparer les propriétés de la série $\sum_{n>0} a_n^*$ aux propriétés de la série $\sum_{n>0} a_n$.

Partie I : deux exemples.

I.1. Cas d'une suite constante.

Soit $\alpha \in \mathbb{C}^*$; on suppose que la suite a est définie par $\forall n \in \mathbb{N}, a_n = \alpha.$

I.1.1. Expliciter $\sum_{k=0}^{n} {n \choose k}$ pour $n \in \mathbb{N}$.

- Expliciter a_n^* pour $n \in \mathbb{N}$. I.1.2.
- I.1.3. La série $\sum_{n>0} a_n$ (resp. $\sum_{n>0} a_n^*$) est-elle convergente ?
- Cas d'une suite géométrique.

Soit $z \in \mathbb{C}$; on suppose que la suite a est définie par : $\forall n \in \mathbb{N}, a_n = z^n$.

- Exprimer a_n^* en fonction de z et n.
- On suppose que |z| < 1.
- 1.2.2.1. Justifier la convergence de la série $\sum a_n$ et expliciter

sa somme
$$A(z) = \sum_{n=0}^{\infty} a_n$$
.

1.2.2.2. Justifier la convergence de la série $\sum a_n^*$ et expliciter

sa somme
$$\sum_{n=0}^{\infty} a_n^*$$
 en fonction de $A(z)$.

- I.2.3. On suppose que |z| > 1.
 - Quelle est la nature (convergente ou divergente) de la série $\sum a_n$?
 - I.2.3.2. Quelle est la nature de $\sum_{n>0} a_n^*$ si z=-2 ?
 - On suppose $z = e^{i\theta}$, avec θ réel tel que $0 < |\theta| < \pi$. Montrer que la série $\sum a_n^*$ est convergente. Calculer la partie réelle et la partie imaginaire de la somme

$$\sum_{n=0}^{\infty} a_n^*$$

MAMOUNI.NEW.FR AMOUNI MY ISMAI

PROBLÈMES CORRIGÉS-MP

Partie II : étude du procédé de sommation.

Dans cette partie, et pour simplifier, on suppose que a est à valeurs réelles.

Comparaison des convergences des deux suites. II.1.

- II.1.1. Soit $n \in \mathbb{N}^*$, on considère une entier k fixé, $k \in [|0, n|]$.
 - II.1.1.1. Préciser un équivalent de $\binom{n}{k}$ lorsque n tend vers $+\infty$.
 - II.1.1.2. En déduire la limite de $\frac{1}{2^n} \binom{n}{k}$ lorsque n tend vers
- Soit *a* une suite réelle et *q* un entier naturel fixé. II.1.2. On considère pour n > q la somme $S_q(n, a)$ $\sum_{k=0}^{q} {n \choose k} \frac{a_k}{2^n}$. Quelle est la limite de $S_q(n,a)$ lorsque l'entier *n* tend vers $+\infty$?
- On suppose que a_n tend vers 0 lorsque n tend vers $+\infty$. II.1.3. Montrer que a_n^* tend vers 0 lorsque n tend vers $+\infty$.
- On suppose que a_n tend vers l (limite finie) lorsque nII.1.4. tend vers $+\infty$. Quelle est la limite de a_n^* lorsque n tend vers $+\infty$?
- La convergence de la suite (a_n) est-elle équivalente à la convergence de la suite (a_n^*) ?
- Comparaison des convergences des séries $\sum (a_n)$ et $\sum (a_n^*)$.

Pour
$$n \in \mathbb{N}^*$$
, on note $S_n = \sum_{k=0}^n a_k$, $T_n = \sum_{k=0}^n a_k^*$, $U_n = 2^n T_n$.

Pour $n \in [0,3]$, exprimer U_n comme combinaison II.2.1. linéaire des sommes S_k , c'est à dire sous la forme $U_n =$ $\sum_{k=0}^{\infty} \lambda_{n,k} S_k.$

On se propose de déterminer l'expression explicite de II.2.2. U_n comme combinaison linéaire des sommes S_k pour $k \in [|0, n|]$:

$$(\mathcal{E}) \ U_n = \sum_{k=0}^n \lambda_{n,k} S_k \text{ pour } n \in \mathbb{N}$$

- II.2.2.1. A quelle expression des coefficients $\lambda_{n,k}$ (en fonction de n et k) peut-on s'attendre compte-tenu des résultats obtenus à la question II.2.1 ?
- II.2.2.2. Etablir la formule (\mathcal{E}) par récurrence sur l'entier n (on pourra remarquer que pour tout $k \in [0, n]$, $a_k = S_k - S_{k-1}$ avec la convention $S_{-1} = 0$).
- On suppose que la série $\sum (a_n)$ est convergente. Mon-II.2.3. trer que la série $\sum (a_n^*)$ est convergente et exprimer la somme $\sum_{n=0}^{+\infty} a_n^*$ en fonction de la somme $\sum_{n=0}^{+\infty} a_n$.
- La convergence de la série $\sum (a_n)$ est-elle équivalente à la convergence de la série $\sum (a_n^*)$?

Partie III : une étude de fonctions.

On rappelle que $: \sigma_n = \sum_{k=1}^n \frac{1}{k} \text{ pour } n \in \mathbb{N}^* \text{ et } \sigma_0 = 0.$

Pour x réel, lorsque cela a du sens, on pose : $\phi(x) = \sum_{n=0}^{\infty} \sigma_n x^n$

PROBLÈMES CORRIGÉS-MP

MAMOUNI MY ISMA

III.4. La série $\sum \frac{(-1)^{k+1}}{\iota}$.

Pour $n \in \mathbb{N}^*$, on note $\ln(n)$ le logarithme népérien de n.

III.4.1. Soit
$$w_k = \ln\left(\frac{k+1}{k}\right) - \frac{1}{k+1}$$
 pour $k \in \mathbb{N}^*$.

- III.4.1.1. Montrer que la série $\sum_{k>1} w_k$ est convergente.
- III.4.1.2. En déduire que la suite de terme général $\sigma_n - \ln(n)$ admet une limite finie (que l'on ne demande pas de calculer) lorsque n tend vers $+\infty$.
- III.4.2. Pour $n \in \mathbb{N}^*$, on pose $\tau_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer τ_{2n} en fonction de σ_{2n} et σ_n .
- III.4.3. Montrer en utilisant III.4.1 et III.4.2 que la série $\sum_{k>1} \frac{(-1)^{k+1}}{k}$ est convergente et déterminer sa somme

III.5. Étude de la fonction ϕ .

- III.5.1. Déterminer le domaine de convergence R de la série $\sum \sigma_n x^n$.
- Préciser l'ensemble de définition Δ de la fonction ϕ , et III.5.2. étudier ses variations sur [0, R].
- III.5.3. Valeur de $\phi\left(\frac{1}{2}\right)$ En utilisant les résultat de la partie II et de la question

III.4.3 expliciter la valeur de $\phi\left(\frac{1}{2}\right)$

Expliciter $\phi(x)$ pour $x \in \Delta$ et retrouver la valeur de III.5.4.

■ Problème II : Mines-Ponts 2008, MP

Espaces de Lorentz

Notations:

Soit Q une matrice symétrique réelle de $\mathcal{M}_n(\mathbb{R})$. On note B_Q la forme bilinéaire associée : pour tout x et y de \mathbb{R}^n ,

$$B_Q(x,y) = {}^t x.Q.y$$

- et on note Φ_Q la forme quadratique associée : $\Phi_Q(x) =$ $B_{\mathcal{O}}(x,x)$.
- rightharpoons Soit V un sous-espace vectoriel de \mathbb{R}^n , on dira que Φ_O est définie positive (respectivement positive, respectivement définie négative) sur V lorsque $\Phi_O(x) > 0$ pour tout x appartenant à V (respectivement $\Phi_O(x) \ge 0$, respectivement $\Phi_O(x) < 0$). On notera \mathcal{V}^+ (respectivement \mathcal{V}_0^+ , respectivement \mathcal{V}^-) l'ensemble des sous-espaces vectoriels sur lesquels Φ_O est définie positive (respectivement positive, respectivement définie négative).
- ${\mathscr F}$ On pose $r(\Phi_Q)=\max_{V\in {\mathcal V}^+}\dim V$ et $s(\Phi_Q)=\max_{V\in {\mathcal V}^+}\dim V$, avec la convention que $\max_{V \in \emptyset} dimV = 0$.

MAMOUNI MY ISMA

PROBLÈMES CORRIGÉS-MP

- ☑ Dans toute cette partie, Q est une matrice symétrique réelle inversible. On note $(Q) = (\lambda_1, \dots, \lambda_n)$ la suite de ses valeurs propres répétées selon leur multiplicité, $n^+(Q)$ le nombre de termes strictement positifs dans (Q) et $n^-(Q)$ le nombre de termes strictement négatifs dans (Q).
- ① Soit $H \in \mathcal{V}^+$ et $G \in \mathcal{V}^-$, montrer que H et G sont en somme directe et que $r(\Phi_O) + s(\Phi_O) \le n$
- ② Montrer que $r(\Phi_O) \ge n^+(Q)$. On a alors de même $s(\Phi_O) > n^+(Q)$.
- 3 Montrer que $r(\Phi_O) = n^+(Q)$ et que $s(\Phi_O) = n^-(Q)$
- 4 Soit *R* une autre matrice symétrique réelle inversible de taille n telle qu'il existe une constante λ satisfaisant la propriété suivante : $||B_O(x,y) - B_R(x,y)|| \le \lambda ||x|| ||y|| \forall x, y \in \mathbb{R}^n$. Montrer qu'il existe $\delta > 0$ tel que $r(\Phi_O) = r(\Phi_R)$ si $\lambda \leq \delta$.

Espaces de Lorentz :

 \leq Soit $Q \in \mathcal{M}_n(\mathbb{R})$, une matrice symétrique et Φ_O la forme quadratique associée. On dit que (\mathbb{R}^n, Q) est un espace de Lorentz lorsque les propriétés suivantes sont vérifiées:

- O est inversible,
- $r(\Phi_O) = 1 \text{ et } s(\Phi_O) = n 1.$

⑤ On suppose dans cette partie que $Q \in \mathcal{M}_n(\mathbb{R})$ est telle que $(\mathbb{R}^n, \mathbb{Q})$ soit un espace de Lorentz. Soit a un vecteur tel que $\Phi_{\mathcal{O}}(a) > 0$ et $b \in \mathbb{R}^n$. Soit l'application φ définie par

$$\begin{array}{ccc}
\varphi & \mathbb{R} & \longrightarrow & \mathbb{R} \\
\rho & \longmapsto & \Phi_Q(b + \rho a)
\end{array}$$

- a On suppose, dans cette question, que a et b sont linéairement indépendants. Montrer qu'il existe au moins une valeur de λ telle que $\varphi(\lambda) < 0$.
- **b** Établir la propriété :

$$B_O^2(a,b) \ge \Phi_O(a)\Phi_O(b)$$

avec égalité si et seulement si a et b sont colinéaires. On pourra s'inspirer de la preuve de l'inégalité de Cauchy-Schwarz.

Bonne Chance