Mamouni My Ismail

Devoir Libre n°19

## Théorèmes de Stone-Weierstrass

MP-CPGE Rabat

## Théorème de Stone-Weierstrass 1

Démonstration par les polynômes de Bernstein

Soit E un evn de dimension finie .  $C^0([0,1],E)$  est muni de la norme de la convergence uniforme

$$N_{\infty}(f) = \sup(\|f(t)\|, t \in [0, 1])$$

On pose pour tout entiers  $(n, k) \in \mathbb{N}^2$  tels que  $0 \le k \le n$ 

$$E_{n,k} = X^k (1 - X)^{n-k}$$

(Polynômes de BERNSTEIN : ils ont étés introduits par le mathématicien Bernstein au début du  $20^{ieme}$ siècle , par des arguments probablistes : en effet dans la loi binomiale B(n,p) qui compte le nombre de succes dans une suite de n épreuves indépendantes ,où p est la probabilité d'un succes sur une épreuve, la probabilité d'obtenir k succes est :

$$\begin{pmatrix} n \\ k \end{pmatrix} p^k (1-p)^{n-k})$$

1. Calculer 
$$\sum_{k=0}^{n} {n \choose k} E_{n,k}$$
,  $\sum_{k=0}^{n} k {n \choose k} E_{n,k}$ ,  $\sum_{k=0}^{n} k^2 {n \choose k} E_{n,k}$ 

2. En déduire la relation 
$$\sum_{k=0}^n \binom{n}{k} (k-nx)^2 E_{n,k} = nX(1-X)$$

Soit  $f \in C^0([0,1], E)$  et  $\varepsilon > 0$ . On se propose de déterminer une fonction polynôme P à coefficients dans E

$$\overrightarrow{P(x)} = \sum_{k=0}^{\deg(P)} x^k \overrightarrow{a_k}, \text{ et } \overrightarrow{a_k} \in E$$

telle que  $N_{\infty}(f-P) < \varepsilon$ 

3. Soit  $\alpha > 0$  et  $t \in [0, 1]$ . On note

$$A_n = \left\{k \in <0, n>, \left|\frac{k}{n} - t\right| \geq \alpha\right\}$$
 Montrer à l'aide de 2° que  $\sum_{k \in A_n} \binom{n}{k} t^k (1-t)^{n-k} \leq \frac{1}{4\alpha^2 n}$ 

4. Démontrer qu'il existe  $\alpha > 0$  tel que

$$\forall (x,y) \in [0,1], |x-y| \leq \alpha \Rightarrow \left\| \overrightarrow{f(x)} - \overrightarrow{f(y)} \right\| \leq \varepsilon$$

5. On pose 
$$\overrightarrow{P_n(t)} = \sum_{k=0}^n \binom{n}{k} t^k (1-t)^{n-k} \overrightarrow{f(\frac{k}{n})}$$
. Montrer que  $\forall t \in [0,1]$ 

$$\left\| \overrightarrow{P_n(t)} - \overrightarrow{f(t)} \right\| \le \frac{N_{\infty}(f)}{2\alpha^2 n} + \frac{\varepsilon}{2}$$

on appelle polynôme d'interpolation de Bernstein de f le polynôme  $\overrightarrow{P_n}(t) = \sum_{k=0}^n \binom{n}{k} t^k (1-t)^{n-k} \overrightarrow{f(\frac{k}{n})}.$ 

Calculer  $\lim_{n\to\infty} N_{\infty}(\overrightarrow{P_n} - \overrightarrow{f})$ 

## THEOREME DE STONE WEIERSTRASS TRIGONOMETRIQUE 2

(démonstration par les sommes Fejer CCP 2004)

On sait que pour toute fonction continue sur un intervalle compact [a,b] et tout  $\varepsilon>0$  il existe une fonction polynômiale P telle que  $\sup\{|f(x)-P(x)|, x\in[a,b]\}=N_{\infty}(f-P)<\varepsilon$ . Ceci revient à dire qu'il existe une suite de fonctions polynomiales  $P_n$  telles que  $\lim_{n\to +\infty} N_{\infty}(P_n-f)=0$ , ou encore : f est la limite uniforme (ie:pour

la norme  $N_\infty$  ) d'une suite de fonctions polynomiales. Soit  $n\in\mathbb{Z}$  . On note  $e_n: egin{array}{ccc} \mathbb{R} & o & \mathbb{C} \\ x & o & e^{inx} \end{array}$  qui est donc une application  $2\pi$  périodique. On appelle polynôme trigonomètrique toute application de  $\mathbb R$  dans  $\mathbb C$  de la forme  $P=\sum_{k=-N}^N \alpha_k e_k$ . Le nom de polynôme vient du fait que  $\forall t\in \mathbb R, P(t)=\sum_{k=-N}^N \alpha_k e^{ikt}=\sum_{k=-N}^N \alpha_k X^k$  ou

Le théorème de Stone Wierstass pour les fonctions périodiques s'énonce ainsi:

Pour toute fonction continue  $2\pi$  périodique f à valeurs dans  $\mathbb C$  et tout  $\varepsilon>0$  il existe une fonction polynômiale trigonomètrique P telle que  $\sup \{|f(x) - P(x)|, x \in [a, b]\} = N_{\infty}(f - P) < \varepsilon$ .

Dans ce qui suit  $f \in C^0(\mathbb{R}, \mathbb{R})$  ,est une fonction  $2\pi$  périodique.

- 1. Justifier les formules  $\sum_{k=0}^{n} \cos(kt) = \frac{\cos(\frac{mt}{2})\sin(\frac{(m+1)t}{2})}{\sin(\frac{t}{2})} \text{ et } \sum_{k=0}^{n} \sin(kt) = \frac{\sin(\frac{mt}{2})\sin(\frac{(m+1)t}{2})}{\sin(\frac{t}{2})}$
- 2. Justifier l'existence de  $M=\max_{x\in\mathbb{R}}|f(x)|$  . De même soit  $\varepsilon>0$ , justifier l'existence de  $\delta_{\varepsilon}>0$  tel que pour tout couple de réels (x,y) tels que  $|x-y|<\delta_{\varepsilon}$  ,  $|f(x)-f(y)|<\varepsilon/2$
- 3. pour tout  $n \in \mathbb{Z}$ , on pose  $c_n(f) = \frac{1}{2\pi} \int f(x)e^{-inx} dx$ - préciser  $c_n(f)$  lorsque f est la fonction constante égale à 1

- Montrer que 
$$\sum_{n=-N}^{N} c_n(f)e_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t-x) \frac{\sin((N+\frac{1}{2})x)}{\sin(\frac{x}{2})} dx$$

On pose 
$$S_N(f) = \sum_{n=-N}^{N} c_n(f)e_n$$
, et, pour  $m \in \mathbb{N}$ ,  $\sigma_m(f) = \frac{1}{m+1} \sum_{N=0}^{m} S_N(f)$ 

$$\text{Montrer que pour } t \in \mathbb{R} \boxed{ \sigma_m(f)(t) = \frac{1}{2\pi(m+1)} \int\limits_{-\pi}^{\pi} f(t-x) \frac{\sin^2((\frac{m+1}{2})x)}{\sin^2(\frac{x}{2})} dx}$$

4. En déduire, si  $\varepsilon > 0$  et  $t \in \mathbb{R}$ ,  $m \in \mathbb{N}$ 

$$|\sigma_m(f)(t) - f(t)| = \frac{1}{2\pi(m+1)} \left| \int_{-\pi}^{\pi} (f(t-x) - f(t)) \frac{\sin^2(\frac{m+1}{2})x}{\sin^2(\frac{x}{2})} dx \right|$$

$$\leq \varepsilon/2 + \frac{1}{2\pi(m+1)} \int_{\delta_{\varepsilon} \le |x| \le \pi} 2M \frac{\sin^2(\frac{m+1}{2})x}{\sin^2(\frac{x}{2})} dx$$

$$\leq \varepsilon/2 + \frac{2M}{(m+1)\sin^2(\frac{\delta_{\varepsilon}}{2})}$$

penser à vérifier que  $\sigma_m(1) = 1$ 

5. Conclure.



A la prochaine