High Tech Prépas, Rabat

High-Tech

GROUPE

SCOLAIRE

Résumé de cours: Fonctions convexes

9 février 2010

Blague du jour:

Bonjour, vous avez rejoint la messagerie vocale d'aide psychiatrique.

- Si vous tes dépressif, le numéro sur lequel vous appuierez est sans importance, personne ne répondra.
- Si vous êtes un compulsif à la répétition, raccrochez et recomposez.
- Si vous êtes un agressif-passif, mettez-nous en attente.
- Si vous êtes antisocial, arrachez le téléphone du mur.
- Si vous avez des difficultés d'attention, ne vous occupez pas des instructions.

Mathématicien du jour

Taylor

Brook Taylor (1685-1731) est un éclectique homme de sciences anglais . Il s'intéressa aux mathématiques, à la musique, la peinture et la philosophie. Il ajouta aux mathématiques une nouvelle branche appelée « calcul de différences finies », inventa l'intégration par partie, et découvrit les séries appelées « développement de Taylor ».

Dans tout le chapitre on considère I = [a, b] un segment de \mathbb{R} , et $f \in \mathcal{F}(I, \mathbb{R})$.

Définition 1 On dit que f est convexe sur I si et seulement si $\forall (x,y) \in I^2$, $\forall \lambda \in [0,1]$ on a: $f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y)$.

Théorème 1 f est convexe sur I si et seulement si $\forall n \in \mathbb{N}^*$, $(x_i)_{1 \leq i \leq n} \in I^n$, $\forall (\lambda_i)_{1 \leq i \leq n} \in [0,1]^n$ on $a: f\left(\sum_{i=1}^n \lambda_i x_i\right) \leq \sum_{i=1}^n \lambda_i f(x_i)$

Théorème 2 f est convexe sur I si et seulement si les cordes de f, (segments qui joignent deux points de la courbes de f) sont au dessus de cette courbe. Autrement dit : $f(x) \leq \frac{f(b) - f(a)}{b - a}(x - a) + f(a) \quad \forall x \in [a,b].$

Théorème 3 f est convexe sur I si et seulement si les pentes des cordes dont on fixe une extrémité sont croissantes. Autrement dit : La fonction $\varphi_a: x \mapsto \frac{f(x) - f(a)}{x - a}$ est croissante.

Théorème 4 Si f est de classe C^1 sur I, alors : f est convexe si et seulement si f' est croissante. Dans ce cas les tangentes de f sont situes en dessous de sa courbe. Autrement dit : $f'(a)(x-a) + f(a) \le f(x)$, $\forall x \in [a,b]$.

Théorème 5 Si f est de classe C^2 sur I, alors : f est convexe si et seulement si $f'' \ge 0$.

Fin à la prochaine