RÉSUMÉ DE COURS: Déterminants.

Systèmes linéaires.

MPSI-Maths.

Source disponible sur :

@http://www.chez.com/myismail

Table des matières

Mr Mamouni : myismail1@menara.ma

1	1 Formes <i>n</i> -linéaires.		
	1.1	Formes bilinéaires	1
	1.2	Formes n -linéaires	2
2	Déterminant d'une famille de vecteurs dans une base donnée.		2

3 Déterminant d'un endomorphisme.

4 Déterminant d'une matrice carrée d'ordre n.

5 Systèmes linéaires.

1 Formes n-linéaires.

1.1 Formes bilinéaires.

Définition 1. On appelle forme bilinéaire sur E, toute application $\varphi: E \times E \longrightarrow \mathbb{K}$ linéaire par rapport à l'une des variables $(x,y) \longmapsto \varphi(x,y)$ fixant l'autre, autrement dit :

$$\varphi(x_1 + \lambda x_2, y) = \varphi(x_1, y) + \lambda \varphi(x_2, y)$$

$$\varphi(x, y_1 + \lambda y_2) = \varphi(x, y_1) + \lambda \varphi(x, y_2)$$

Propriétés.

Soit φ une forme bilinéaire sur $E, (x, y) \in E^2$, et $(\lambda, \mu) \in \mathbb{K}^2$, on a les résultats suivants :

$$- \varphi(\lambda x, \mu y) = \lambda \mu \varphi(x, y).$$

$$- \varphi(x, y) = 0 \text{ si } x = 0_E \text{ ou } y = 0_E.$$

Vocabulaire.

Soit φ une forme bilinéaire sur E, on dit que :

MPSI-Maths
Mr Mamouni

Résumé de cours: Groupes symétriques .

3

4

http://www.chez.com/myismail myismail1@menara.ma $-\varphi$ est symétrique si et seulement si $\varphi(x,y)=\varphi(y,x) \quad \forall (x,y)\in E^2$.

 $-\varphi$ est antisymétrique ou bien alternée si et seulement si $\varphi(x,y) = -\varphi(y,x) \quad \forall (x,y) \in E^2$.

Propriétés.

Soit φ une forme bilinéaire alternée sur E, $(x,y) \in E^2$, et $(\lambda,\mu) \in \mathbb{K}^2$ on a les résultats suivants :

 $- \varphi(x, x) = 0.$

 $-\varphi(x,y+\lambda x) = \varphi(x,y).$

 $-\varphi(x,y)=0$ si $\{x,y\}$ est liée.

Théorème 1. Toutes les formes bilinéaires alternées sur un K-espace vectoriel de dimension 2 sont proprtionnelles.

1.2 Formes n-linéaires.

Définition 2. On appelle forme n-linéaire sur E, toute application $\varphi: \underbrace{E \times \ldots \times E}_{} \longrightarrow \mathbb{K}$ linéaire par rapport à cha-

$$(x_1,\ldots,x_n) \longmapsto \varphi((x_1,\ldots,x_n))$$

cune de ses variables en fixant les autres, autrement dit :

$$\varphi\left(\sum_{i=1}^n \lambda_i x_i, y_2, \dots, y_n\right) = \sum_{i=1}^n \lambda_i \varphi(x_i, y_2, \dots, y_n)$$

Linéarité par rapport à la première variable

$$\varphi\left(y_1, \sum_{i=1}^n \lambda_i x_i, y_3, \dots, y_n\right) = \sum_{i=1}^n \lambda_i \varphi(y_1 x_i, y_3, \dots, y_n)$$

Linéarité par rapport à la deuxième variable

$$\varphi\left(y_1,\ldots,y_{n-1},\sum_{i=1}^n\lambda_ix_i\right)=\sum_{i=1}^n\lambda_i\varphi(y_1,\ldots,y_{n-1},x_i)$$

Linéarité par rapport à la dernière variable

Propriétés.

Soit φ une forme *n*-linéaire sur E, $(x_1, \ldots, x_n) \in E^n$, et $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$, on a les résultats suivants :

$$- \varphi(\lambda_1 x_1, \dots, \lambda_n x_n) = \prod_{i=1}^n \varphi(x_1, \dots, x_n).$$

 $-\varphi(x_1,\ldots,x_n)=0$ si l'un des x_i est nul.

Vocabulaire.

Soit φ une forme *n*-linéaire sur E, on dit que :

- φ est symétrique $\ si\ et\ seulement\ si$:

$$\varphi(x_{\sigma(1)},\ldots,x_{\sigma(n)}) = \varphi(x_1,\ldots,x_n) \quad \forall (x_1,\ldots,x_n) \in E^n.$$

 $-\varphi$ est antisymétrique si et seulement si

$$\varphi(x_{\sigma(1)},\ldots,x_{\sigma(n)}) = \varepsilon(\sigma)\varphi(x_1,\ldots,x_n) \quad \forall (x_1,\ldots,x_n) \in E^n.$$

$$-\varphi(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n) = -\varphi(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n),$$

$$\forall (x_1,\ldots,x_n) \in E^n, \forall 1 \le i \ne j \le n.$$

Propriétés.

Soit φ une forme bilinéaire, alors φ est alternée $\ si\ et\ seulement\ si$ elle est antisymétrique.

Soit φ une forme bilinéaire alternée sur E, $(x_1, \ldots, x_n) \in E^n$, et $(\lambda_1, \ldots, \lambda_n) \in \mathbb{K}^n$ on a les résultats suivants :

 $- \varphi(x_1, \ldots, x_n) = 0$ si $\exists i \neq j$ tel que $x_i = x_j$.

$$- \varphi\left(x_1, \dots, x_i + \sum_{j \neq i} \lambda_j x_j, \dots, x_n\right) = \varphi(x_1, \dots, x_n).$$

$$-\varphi(x_1,\ldots,x_n)=0$$
 si $\{x_1,\ldots,x_n\}$ est liée.

Théoréme 2. Toutes les formes n-linéaires alternées sur un \mathbb{K} espace vectoriel de dimension n sont proprtionnelles.

2 Déterminant d'une famille de vecteurs dans une base donnée.

Définition 3. Soit \mathcal{B} une base de E tel que dim E = n. On appelle déterminant dans la base \mathcal{B} , l'unique forme n-linéaire alternée définie sur E^n notée $\det_{\mathcal{B}}$ vérifiant la relation suivante : $\det_{\mathcal{B}}(\mathcal{B}) = 1$

Propriétés.

Soit \mathcal{B} une base de E, et \mathcal{B}' famille d'éléments de E tel que $\operatorname{card} \mathcal{B}' = \dim E$, on a les résultats suivants :

- $-\mathcal{B}'$ est liée si et seulement si $\det_{\mathcal{B}}(\mathcal{B}') = 0$.
- $-\mathcal{B}'$ est libre si et seulement si $\det_{\mathcal{B}}(\mathcal{B}') \neq 0$.
- $-\mathcal{B}' = \{x,y\}$ est une base de E si et seulement si $\det_{\mathcal{B}}(\mathcal{B}') \neq 0$, et dans ce cas on a : $\det_{\mathcal{B}'}(\mathcal{B}) = \frac{1}{\det_{\mathcal{B}}(\mathcal{B}')}$

Orientation d'un \mathbb{R} -espace vectoriel.

Orienter E revient à se fixer une base \mathcal{B}_0 , toute autre base \mathcal{B} est dite directe si et seulement si $\det_{\mathcal{B}_0}(\mathcal{B}) > 0$, dans le cas contraire c'est à dire si $\det_{\mathcal{B}_0}(\mathcal{B}) < 0$ elle est dite indirecte.

En général les bases canoniques sont directes et orientent l'espace vectoriel.

Équation d'une droite du plan.

Si D est la droite du plan passant par le point A est dirigée par le vecteur \vec{u} , alors son équation s'obtient à l'aide da la relation suivante :

 $M \in D \iff \det_{\mathcal{B}}(\vec{AM}, \vec{u}) = 0$ où $\mathcal{B} = (\vec{i}, \vec{j})$ la base canonique de \mathbb{R}^2 .

Déterminant d'un endomorphisme.

Définition 4. Soit $u: E \longrightarrow E$ un endomorphisme, alors $\det_{\mathcal{B}} u(\mathcal{B})$ ne dépond pas du choix de la base \mathcal{B} de E, on pose alors $det(u) = det_{\mathcal{B}} u(\mathcal{B})$ et on l'appelle le déterminant de u.

Propriétés.

Soit $u, v : E \longrightarrow E$ deux endomorphismes de E tel que dim E = n, \mathcal{B} une base de E et $\mathcal{B}' = (x_1, \dots, x_n)$ famille d'élements de E, on a les résultats suivants:

- $-\det(id_E)=1.$
- $-\det_{\mathcal{B}}(u(\mathcal{B}')) = \det(u) \det_{\mathcal{B}}(\mathcal{B}').$
- $-\det(u \circ v) = \det(u) \det(v).$
- -u est un automorphisme de E si et seulement si $det(u) \neq 0$ et dans ce $\operatorname{cas} \det(u^{-1}) = \frac{1}{\det(u)}.$

Déterminant d'une matrice carrée d'ordre n.

Définition 5. Le déterminant d'une matrice carrée d'ordre n, $A \in \mathcal{M}_n(\mathbb{K})$, noté $\det(A)$ est par définition le déterminant de ses vecteurs colonnes dans la base canonique de \mathbb{K}^n .

Notation.

Si $A = (a_{i,j})_{1 \le i,j \le n}$, son déterminant se note aussi $|a_{i,j}|$.

Propriétés.

- $-\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc.$
- Si E est un \mathbb{K} -ev de dimension finie, de base \mathcal{B} et u un endomorphisme de E, alors : det $u = \det (\mathcal{M}_{\mathcal{B}}(u))$.
- $\det(I_n) = 1.$
- Soit $A = (a_{i,j})_{1 \le i,j \le n}$, alors $\det A = \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$. Soit $A = (a_{i,j})_{1 \le i,j \le n}$ alors $\det(A) = \sum_{i=1}^n (-1)^{i+j} \det(A_{i,j}) \quad \forall 1 \le j \le n$
- où $A_{i,j}$ est la matrice obtenue en enlevant la i-ème ligne et j-ème co-

lonne, $det(A_{i,j})$ s'appelle cofacteur d'indice (i,j), la matrice formée par ses cofacteurs s'appelle comatrice de A et se note Com(A). On dit qu'on a developpé le déterminant suivant la *j*-ème colonne.

– Si $A = (a_{i,j})_{1 \le i,j \le n}$ alors $\det(A) = \sum_{i=1}^{n} (-1)^{i+j} \det(A_{i,j}) \quad \forall 1 \le i \le n$. On

dit qu'on a developpé le déterminant suivant la *j*-ème colonne.

- Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tel que $ad bc \neq 0$, alors A est inversible avec $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
- Si \mathcal{B} et \mathcal{B}' sont deux bases de E, alors $\det_{\mathcal{B}}(\mathcal{B}') = \det(P)$ où P est la matrice de passage de \mathcal{B} vers \mathcal{B}' .
- $-A = (a_{i,j})$ est inversible si et seulement si $\det(A) \neq 0$ et dans ce cas :

$$\det(A^{-1}) = \frac{1}{\det(A)} \text{ avec } A^{-1} = \frac{1}{\det(A)}^t Com(A)$$

- $\det(AB) = \det(A) \det(B).$
- Si P est inversible alors $det(PAP^{-1}) = det(A)$.
- $-\lambda$ est une valeur propre de A si et seulement si λ racine du polynôme $\chi_A(X) = \det(A XI_n)$, appelé polynôme caractéristique de A.
- Toute matrice qui admet n valeurs propres distinctes dans \mathbb{K} est diagonalisable dans $\mathcal{M}_n(\mathbb{K})$.

5 Systèmes linéaires.

On appelle système linéaire à n équation et p inconnues et à coefficients dans \mathbb{K} , tout système d'équations de la forme

$$(S) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2p}x_p = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p = b_n \end{cases}$$

Un tel système peut s'écrire matriciellement sous la forme AX=b où $A=(a_{ij})_{\substack{1\leq i\leq n\\1\leq j\leq p}}\in \mathcal{M}_{n,p}(\mathbb{K})$ s'appelle la matrice du système, $b=(b_i)_{1\leq i\leq n}$

s'appelle son second membres, et $X = (x_i)_{1 \le i \le p}$ sont les inconnues.

Le système est dit compatible si et seulement si il admet des solutions. On a alors le résultat suivant :

(S) est compatible si et seulement si $b \in \text{Im}(A)$ si et seulement si b est combinaison linéaire des vecteurs colonnes de la matrice A, au fait résoudre

 (\mathcal{S}) revient à chercher les coefficients de cette combinaison linéaire.

Le système AX=0 s'appelle système homogène, ou sans second membre, son ensemble de solutions est exactement le \mathbb{K} -ev $\ker(A)$ de dimension p-r où r=rg(A).

L'ensemble de solutions du système (S) est exactement $X_0 + \ker(A)$, où X_0 est une solution particulière, autrement dit : toute solution X de l'équation AX = b s'écrit sous la forme $X = X_0 + X_1$ où X_0 est une solution particulière et $X_1 \in \ker(A)$.

Si rg(A) = r, alors toutes les inconnues s'écrivent seulement en fonction de p-r inconnues appelées inconnues principales

Le système est dit de Crammer lorsque la matrice A est carrée inversible, c'est à dire n = p = r, dans ce cas il a admet une unique solution $X = A^{-1}b$.

Il est possible d'inverser la matrice A, en résolvant le système AX = Y et exprimer les coefficients de X en fonction de ceux de Y ce qui donnera le système BY = X, on a alors $B = A^{-1}$.

Si A est inversible, alors l'une solution $X=(x_i)_{1\leq i\leq n}$ du système AX=b s'obtient à l'aide des formules suivantes : $x_i=\frac{\det(\bar{A}_i)}{\det(A)}$ où A_i est la matrice obtenue en remplaçant dans A la i-ème colonne par le second membre b.

Fin.