RÉSUMÉ DE COURS : Développements limités

MPSI-Maths.

Mr Mamouni : myismail1@menara.ma

Source disponible sur :

@http://www.chez.com/myismail

بِسمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ وَ قُلِ إِعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُم وَ رَسُولُهُ وَ النُّو مِنُون

صَدَقَ اللَّهُ العَظِيم

Vocabulaire.

- On dit que $f = o(u^n)$ au voisinage de 0 si et seulement si $\lim_{n \to \infty} \frac{f(u)}{u^n} = 0$.
- On dit que f admet un developpement limité au voisinage de $\mathbf{0}$ à l'ordre $n \in \mathbb{N}$ si et seulement si $\exists (a_i)_{0 \leq i \leq n}$ tel que $f(u) = a_0 + a_1 u + \dots a_n u^n + o(u^n)$, qu'on notera en abreviation $DL_n(0)$.
- Si f est continue en 0, son $DL_0(0)$ est f(u) = f(0) + o(1).
- Si f est dérivable en 0, son $DL_1(0)$ est f(u) = f(0) + f'(0)u + o(u).
- Pour tout $a \neq 0$, le $DL_n(a)$ de f s'obtient en faisant à partir du $DL_0(0)$ de la fonction g(u) = f(a+u) où u = x a.
- Si $n \leq m$, le $DL_n(0)$ s'obtient à partir du $DL_m(0)$ en éliminant dans celui-ci les puissances qui dépassent n, on dit qu'on a tronqué à l'ordre n.
- La partie principale d'une fonction au voisinage de 0 est par définition la plus petite puissance, munie de son coefficient, qui apparait dans tous les $DL_n(0)$ possibles.
- On dit que f admet un développement asymptotique à l'ordre n au voisinage de ∞ , $DAS_n(\infty)$ si et seulement si la fonction $g(u) = f(\frac{1}{x})$ où $u = \frac{1}{x}$ admet un $DL_n(0)$, ce $DL_n(0)$ de g est par définition le $DAS_n(\infty)$ de f.
- Si f est de classe C^n en 0, alors elle y admet un $DL_n(0)$ obtenu

à l'aide de la formule suivante dite de Taylor-Young.

$$f(u) = f(0) + f'(0)u + \dots \frac{f^{(n)}(0)}{n!}u^n + o(u^n)$$

Opération sur les $DL_n(0)$. On suppose que f et g admettent des $DL_n(0)$, on a les propriétés suivantes :

- Somme :Le $DL_n(0)$ de f+g est obtenu en faisant la somme de celui de f avec celui de g.
- Produit : Le $DL_n(0)$ de fg est obtenu en faisant le produit de celui de f avec celui de g, mais en tronquant à l'ordre n.
- Dérivée : Le $DL_n(0)$ de f' est obtenu en dérivant le $DL_{n+1}(0)$ de f.
- Primitive : Le $DL_n(0)$ de toute primitive F de f est obtenu en intégrant le $DL_{n-1}(0)$ de f et en ajoutant la constante F(0).
- Quotient : Si le $DL_n(0)$ de f est $f(u) = a_0 + a_1 u + \dots a_n u^n + o(u^n)$ et si $a_0 \neq 0$, alors le $DL_n(0)$ de $\frac{1}{f}$ est obtenu en à partir du $DL_n(0)$ de $g(v) = \frac{1}{a_0} \frac{1}{1+v}$ où $v = \frac{a_1 u + \dots a_n u^n}{a_0}$.
- Rapport : Le $DL_n(0)$ de $\frac{f}{g}$ est obtenu en faisant le produit de celui de f avec celui de $\frac{1}{g}$.
- Composé : Si le $DL_n(0)$ de f est $f(u) = a_0 + a_1u + \dots a_nu^n + o(u^n)$ et si $a_0 = 0$, alors le $DL_n(0)$ de g est obtenu en remplaçant dans le $DL_n(0)$ de g la variable u par l'expression $a_1u + \dots a_nu^n$, en tronquant toujours à l'ordre n.

Formules usuelles.

Cas généraux

Cas généraux.	
$DL_n(0)$	$e^x = \sum_{k=0}^n \frac{x^k}{k!} + o(x^n)$
$DL_n(0)$	$\frac{\sum_{k=0}^{n} k!}{1-x} = \sum_{k=0}^{n} x^k + o(x^n)$
$DL_n(0)$	$\frac{1}{1+x} = \sum_{k=0}^{n} (-1)^k x^k + o(x^n)$
$DL_n(0)$	$\ln(1-x) = -\sum_{k=0}^{n} \frac{x^k}{k} + o(x^n)$
$DL_n(0)$	$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} x^k + o(x^n)$
$DL_{2n+1}(0)$	$\sin(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o(x^{2n+1})$
$DL_{2n}(0)$	$\sin(x) = \sum_{k=0}^{n-1} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + o(x^{2n})$
$DL_{2n+1}(0)$	$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{x^{2k}} + o(x^{2n+1})$
$DL_{2n}(0)$	$\cos(x) = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + o(x^{2n})$
$DL_{2n+1}(0)$	$sh(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$
$DL_{2n}(0)$	$sh(x) = \sum_{k=0}^{n-1} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n})$
$DL_{2n+1}(0)$	$ch(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$
$DL_{2n}(0)$	$\cos(x) = \sum_{k=0}^{n} \frac{(2k)!}{(2k)!} x^{2k} + o(x^{2n})$ $\sin(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n+1})$ $\sinh(x) = \sum_{k=0}^{n-1} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n})$ $\sinh(x) = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + o(x^{2n})$ $\cosh(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n+1})$ $\cosh(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n})$ $\cosh(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n})$ $\cosh(x) = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + o(x^{2n})$
$DL_n(0)$	$(1+x)^{\alpha} = \sum_{k=0}^{n} \frac{\alpha(\alpha-1)\dots(\alpha-(k-1))}{(k)!} x^{k} + o(x^{n})$

Cas particuliers.

	0 9
$DL_3(0)$	$e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + o(x^3)$
$DL_3(0)$	$\frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3)$
$DL_3(0)$	$\frac{1}{1+x} = 1 - x + x^2 - x^3 + o(x^3)$
$DL_3(0)$	$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} + o(x^3)$
$DL_3(0)$	$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} + o(x^3)$ $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + o(x^3)$ $\sin(x) = x - \frac{x^3}{3!} + o(x^3)$ $\sin(x) = x - \frac{x^3}{3!} + o(x^4)$ $\cos(x) = 1 - \frac{x^2}{2} + o(x^3)$
$DL_3(0)$	$\sin(x) = x - \frac{x^3}{3!} + o(x^3)$
$DL_4(0)$	$\sin(x) = x - \frac{x^3}{3!} + o(x^4)$
$DL_3(0)$	$\cos(x) = 1 - \frac{x^2}{2!} + o(x^3)$
$DL_4(0)$	$\cos(x) = 1 - \frac{x^2}{2!} + o(x^3)$ $\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$
$DL_3(0)$	$sh(x) = x + \frac{x^3}{3!} + o(x^3)$
$DL_4(0)$	$sh(x) = x + \frac{x^3}{3!} + o(x^4)$
$DL_3(0)$	$ch(x) = 1 + \frac{x^2}{2!} + o(x^3)$
$DL_4(0)$	$ch(x) = 1 + \frac{x^2}{2!} + o(x^3)$ $ch(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + o(x^4)$
$DL_2(0)$	$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + o(x^2)$
$DL_3(0)$	$\tan(x) = x + \frac{x^3}{3} + o(x^3)$
$DL_2(0)$	$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + o(x^2)$