RÉSUMÉ DE COURS : Espaces vectoriels Euclidiens

MPSI-Maths.

MPSI-Maths

Mr Mamouni

Source disponible sur :

©http://www.chez.com/myismail

http://www.chez.com/myismail

myismail 1@menara.ma

 $\mathbf{Mr\ Mamouni}:\ \textit{myismail1@menara.ma}$

	Table des matières			3.2 Distance d'un élément x de E à un sous espace vectoriel F . 3.3 Rotations	
L	Produit scalaire.	2		3.4 Symétrie orthogonales.	
	1.1 Norme euclidienne	2		3.5 Automorphismes orthogonaux.	
	1.2 Distance euclidienne.	2			
	1.3 Vecteurs unitaires	2	4	Matrices orthogonales.	ļ
	1.4 Vecteurs orthognaux	2	_	A / 1: /1 1 1	,
	1.5 Sous espaces orthognaux	2	5	Automorphismes orthogonaux du plan.	ξ
	1.6 Orthogonal d'un sous espace vectoriel	2		5.1 Propriétés des rotations du plan	(
	1.7 Famille orthogonale	3	6	Automorphismes orthogonaux de l'espace.	6
	1.8 Famille orthononrmale	3	Ū	6.1 Propriétés des rotations de l'espace	(
2	Espace euclidien.	3			
	2.1 Procédé d'orthogonalisation de Gramm-Shmidt	3			
	2.2 Produit vectoriel	4			
	2.3 Produit vectoriel en dimension 3	4			
}	Applications linéaires et espaces euclidiens.	4			
	3.1 Projection orthogonale	4			

Résumé de cours: Espaces vectoriels euclidiens.

Page 1 sur 6

Dans tout le chapitre E est un \mathbb{R} -espace vectoriel.

Produit scalaire.

Définition 1. On appelle produit scalaire sur E toute forme biliéaire définie sur $E \times E$ symétrique définie positive. Autrement dit une appli $cation <,>: E \times E \to \mathbb{R}$ vérifiant les propriétés suivantes :

Bilénaire :

$$< x_1 + \lambda x_2, y > = < x_1, y > + \lambda < x_2, y >, \forall (x_1, x_2, y) \in E^3, \forall \lambda \in \mathbb{R}$$

 $< x, y_1 + \lambda y_2 > = < x, y_1 > + \lambda < x, y_2 >, \forall (x, y_1, y_2) \in E^3, \forall \lambda \in \mathbb{R}$

Symétrique: $\langle x, y \rangle = \langle y, x \rangle . \forall (x, y) \in E^2$.

 $\overline{D\acute{e}finie:} \langle x, x \rangle = 0 \Rightarrow x = 0_E.$ $\overline{Positive} : \langle x, x \rangle > 0, \forall x \in E.$

Norme euclidienne.

On définit alors la norme euclidienne sur E ainsi : pour tout $x \in E$ on pose

$$||x|| = \sqrt{\langle x, x \rangle}$$

et on a les propriétés suivantes $\forall (x,y) \in E^2, \forall \lambda \in \mathbb{R}$.

Inégalité de Cauchy-Scwarz. $|\langle x, y \rangle| \le ||x|| \, ||y||$ avec égalité si et seulement $\overline{si} \ x \ \text{et} \ y \ \text{sont proportionnels}.$

 $||x+y||^2 = ||x||^2 + ||y||^2 + 2|\langle x,y \rangle|, ||x-y||^2 = ||x||^2 + ||y||^2 - 2|\langle x,y \rangle|.$ Identité du parallélogramme. $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2).$

 $\overline{\text{Identit\'e de polarisation.}} < x, y > = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right).$

 $||x|| \ge 0, \quad ||x|| = 0 \Rightarrow x = 0_E, \quad ||\lambda x|| = |\lambda| ||x||$

Inégalité triangulaire. $||x + y|| \le ||x|| + ||y||$.

Distance euclidienne.

On définit alors la distance euclidienne sur E^2 ainsi : pour tout $(x,y) \in E^2$ on pose:

$$d(x,y) = ||x - y||$$

On a les propriétés suivantes : $\forall (x, y, z) \in E^3$.

$$d(x,x) = 0$$

$$d(x,y) = 0 \Rightarrow x = y$$

$$d(x, z) \le d(x, y) + d(y, z)$$
 Inégalité triangulaire

1.3 Vecteurs unitaires.

Ce sont les $x \in E$ tel que ||x|| = 1, tout $x \neq 0_E$ peut être normalisé pour obtenir lélement unitaire, $\frac{x}{\|x\|}$

1.4 Vecteurs orthognaux.

On dit que deux éléments $(x,y) \in E^2$ sont orthogonaux si et seulement si leur produit scalaire est nul, càd : $\langle x, y \rangle = 0$, on écrit alors : $x \perp y$.

Propriétés.

- $-0_E \perp x, \forall x \in E.$
- Si $x \perp x$ alors $x = 0_E$.

1.5 Sous espaces orthograux.

Deux sous espace vectoriel F et G de E sont dits orthogonaux si et seulement si chaque élément de F est orthogonal à chaque élément de G, on écrit alors : $F \perp G$.

Orthogonal d'un sous espace vectoriel.

Soit F un sous espace vectoriel de E, l'ensemble des éléments de E orthogonaux à ceux de F, noté F^{\perp} est un sous espace vectoriel de E, appelé l'orthogonal de F, notez bien que : $y \in F^{\perp} \Leftrightarrow \langle x, y \rangle = 0, \forall x \in F.$

Propriétés.

- $-F \subset G \Rightarrow G^{\perp} \subset F^{\perp}.$
- $-E^{\perp} = \{0_E\}.$ $-\{0_E\}^{\perp} = E.$

1.7 Famille orthogonale.

C'est toute famille $(e_i)_{1 \le i \le m}$ formée par des éléments deux à deux orthogonaux, càd : $< e_i, e_j >= 0$ si $i \ne j$.

Théorème de Phytagore.

Soit $(e_i)_{1 \le i \le m}$ une famille orthogonale, alors :

$$||e_1 + ... + e_m||^2 = ||e_1||^2 + ... + ||e_m||^2$$
.

1.8 Famille orthononrmale.

C'est toute famille $(e_i)_{1 \le i \le m}$ formée par des éléments unitaires deux à deux orthogonaux, càd : $\langle e_i, e_j \rangle = 0$ si $i \ne j$ 1 si i = j

Propriété.

Toute famille orthonormale est libre.

Théorème.

Soit
$$(e_i)_{1 \le i \le m}$$
 une famille orthonormale, alors $\left\| \sum_{i=1}^m \lambda_i e_i \right\|^2 = \sum_{i=1}^m \lambda_i^2$.

2 Espace euclidien.

C'est tout \mathbb{R} -espace vectoriel de dimension finie muni d'un produit scalaire. Dans toute la suite on considère E espace vectoriel euclidien de dimension n.

2.1 Procédé d'orthogonalisation de Gramm-Shmidt.

De toute base $(e_i)_{1 \le i \le n}$ de E, on peut construire une base orthogonale $(e_i')_{1 \le i \le n}$, en posant :

$$\begin{array}{ll} e_1'=e_1\\ e_2'=e_2+\lambda e_1' & \text{avec }\lambda \text{ obtenue à l'aide de la relation}\\ &< e_2',e_1'>=0\\ \vdots\\ e_n'=e_2+\lambda_1e_1'+\ldots+\lambda_{n-1}e_{n-1}' & \text{avec }\lambda_1,\ldots,\lambda_{n-1} \text{ obtenues à l'aide}\\ &\text{des relations}:\\ &< e_n',e_1'>=\ldots=< e_n',e_{n-1}'>=0 \end{array}$$

Corollaire 1. Tout espace vectoriel euclidien admet une base orthonormale.

Théoréme 1. Soit $(e_i)_{1 \le i \le n}$ une base orthonormale $\forall (x,y) \in E^2$, on a less résultats suivants : $x = \sum_{i=1}^n \langle x, e_i \rangle e_i.$ $\langle x, y \rangle = \sum_{i=1}^n \langle x, e_i \rangle \langle y, e_i \rangle.$ $\|x\|^2 = \sum_{i=1}^n \langle x, e_i \rangle^2.$

Théorème 2. Théorème de la base orthonormale incomplète. Toute famille orthonormale peut être complétée pour obtenir une base orthonormale.

Corollaire 2. Soit F un sous espace vectoriel de E, alors F et F^{\perp} sont supplementaire dans E, càd:

$$E = F \oplus F^{\perp}$$

En particulier dim $F^{\perp} = \dim E - \dim F$ et $(F^{\perp})^{\perp} = F$.

Corollaire 3. Pour toute forme linéaire $\varphi : E \to R$, il existe un unique $a \in E$ tel que $\varphi(x) = \langle a, x \rangle, \forall x \in E$.

2.2 Produit vectoriel.

Soit \mathcal{B} une base orthonormale de E, et $(x_i)_{1 \leq i \leq n-1} \in E^{n-1}$ famille fixée de n-1 éléments, alors l'application $\varphi: E \to R$ est une $x \longmapsto \det_{\mathcal{B}}(x_1, \dots, x_{n-1}, x)$

forme linéaire, il existe donc un unique élément de E, noté $x_1 \wedge \ldots \wedge x_{n-1}$ et appelé produit vectoriel des $(x_i)_{1 \leq i \leq n-1}$ tel que $\varphi(x) = \langle x_1 \wedge \ldots \wedge x_{n-1}, x \rangle, \forall x \in E$, autrement dit :

 $\det_{\mathcal{B}}(x_1,\ldots,x_{n-1},x) = \langle x_1 \wedge \ldots \wedge x_{n-1},x \rangle, \forall x \in E, \text{ autrement diff} :$

2.3 Produit vectoriel en dimension 3.

Propriétés.

L'application $\varphi: \mathbb{R}^3 \times \mathbb{R}^3 \to R^3$ est une forme bilinéaire antisymétrique. $(x,y) \longmapsto x \wedge y$

 $x \wedge y \perp x \text{ et } x \wedge y \perp y, \forall (x,y) \in E^2.$

Si
$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
, $y = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$, alors $x \wedge y = \begin{pmatrix} \begin{vmatrix} x_2 & y_2 \\ x_3 & y_3 \end{vmatrix} \\ -\begin{vmatrix} x_1 & y_1 \\ x_3 & y_3 \end{vmatrix} \\ \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \end{pmatrix}$.

(u, v, w) est une base orthonormale directe de R^3 si et seulement si $||u|| = ||v|| = 1, \langle u, v \rangle = 0$ et $w = u \wedge v$.

3 Applications linéaires et espaces euclidiens.

3.1 Projection orthogonale.

Définition 2. Une projection $p: E \to E$ est dite orthgonale E si et seulement si $Imp = (Kerp)^{\perp}$.

Théoréme 3. Soit $p: E \to E$ linéaire, alors p est une projection orthogonale sur E si et seulement si $p^2 = p$. $< p(x), y > = < x, p(y) >, \forall (x,y) \in E^2$

Théoréme 4. Soit $p: E \to E$ linéaire, $\mathcal{B} = (e_i)_{1 \leq i \leq n}$ une base orthonormale de E et $M = \mathcal{M}_B(p)$, alors p est un projection orthogonale si et seulement si $M^2 = M$ et ${}^tM = M$.

Théoréme 5. Soit p projection orthogonale de rang r et $(e_i)_{1 \leq i \leq r}$ une base orthonormale de Imp, alors $\forall x \in E$ on $a: p(x) = \sum_{i=1}^{r} \langle x, e_i \rangle$ e_i .

3.2 Distance d'un élément x de E à un sous espace vectoriel F.

Définition 3. On la note d(x, F) et c'est par définition la plus petite distance de x aux éléments de F.

Théoréme 6. $d(x, F) = d(x, p_F(x))$, où $p_F(x)$ désigne la projection orthogonale de x sur F.

Corollaire 4. Si dim F = r et $(e_i)_{r+1 \le i \le n}$ une base orthonormale de F^{\perp} , alors $d(x,F)^2 = \sum_{i=r+1}^n \langle x, e_i \rangle^2.$

3.3 Rotations.

Ce sont qui transofoment toute base orthonormale directe de E en une base orthonormale directe de E. Leurs déterminat vaut toujours 1.

3.4 Symétrie orthogonales.

Définition 4. Ce sont les applications linéaires $s: E \to E$ telles que $s^2 = id_E$ dont les sous espaces propres associes sont orthogonaux, i.e : $Ker(s+id_E) = Ker(s-id_E)^{\perp}$.

Réflexions. Ce sont les symétries orthogonales par rapport à des hyperplans, i.e : $\dim \text{Ker}(s-\text{id}_E) = n-1$.

Remarque. Pour toute réflexion s de E on a : $det(s) = (-1)^{n-1}$.

3.5 Automorphismes orthogonaux.

Définition 5. On appelle automorphisme orthogonal de E, toute application linéaire $u: E \to E$ qui conserve le produit scalaire. càd : $\langle u(x), u(y) \rangle = \langle x, y \rangle, \forall (x, y) \in E^2$.

Théoréme 7. Soit une application linéaire $u: E \to E$, on a les équivalences suivantes : u conserve le produit scalaire si et seulement si u conserve la norme i.e : ||u(x)|| = ||x||, $\forall x \in E$. si et seulement si u conserve la distance i.e : $d(u(x), u(y)) = d(x, y), \forall (x, y) \in E^2$, on dit aussi que c'est un isométrie.

Propriété.

L'ensemble des automorphismes orthogonaux est sous-groupe de GL(E), on l'appele le groupe orthogonal et on le note O(E).

Théorème.

Soit une application linéaire $u: E \rightarrow E$, on a les équivalences suivantes :

u est automorphisme orthogonal de E

si et seulement si u transofome toute base orthonormale de E en une base orthonormale de E. si et seulement si u transofome au moins une base orthonormale de E en une base orthonormale de E.

4 Matrices orthogonales.

Définition 6. Une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est dite orthogonale si et seulement si elle vérifie l'une des relations suivantes, (qui sont d'ailleurs équivalentes) : $M^tM = I_n$ ou bien $MM^t = I_n$.

Propriété.

L'ensemble des matrices orthogonales est un sous-groupe de $GL_n(\mathbb{R})$, on l'appelle le groupe orthogonal d'ordre n et on le note O(n).

Remarque.

Si $M \in O(n)$, alors $\det(M) = \pm 1$. L'ensemble des matrices orthogonales directes $(\det(M) = 1)$, est un sous-groupe de O(n), on l'appelle le groupe spécial d'ordre n et on le note SO(n).

Théorème.

 $M \in O(n)$ si et seulement si ses colonnes forment une base orthonormale de \mathbb{R}^n pour son produit scalaire canonique.

Corollaire 5. Soit une application linéaire $u: E \to E$, on a les équivalences suivantes :

u est automorphisme orthogonal de E

 $si\ et\ seulement\ si\ sa\ matrice\ dans\ toute\ base\ orthonormale\ de\ E\ en\ une\ matrice\ orthogonale.$

si et seulement si sa matrice dans au moins une base orthonormale de E en une matrice orthogonale.

Corollaire 6. Soit \mathcal{B} et \mathcal{B} ' deux base orthonormale de E, alors $P = P_{\mathcal{B} \to \mathcal{B}'}$ est une matrice orthogonale, en particulier $P^{-1} = {}^{t} P$.

5 Automorphismes orthogonaux du plan.

Soit $M = \begin{pmatrix} a & c \\ c & d \end{pmatrix}$ matrice de u dans la base canonique de \mathbb{R}^2 .

Pour que M soit orthogonale il faut que $a^2+b^2=c^2+d^2=1$ et ac+bd=0, dans ce cas u est soit une rotation $u=r_\theta$ (si det M=1) ou bien symétrie

axiale $u = s_{\Delta}$ (si det M = -1).

Si det M=1, on trouve θ à l'aide de la relation $a=\cos\theta, b=\sin\theta$.

Si det M=-1, alors Δ est la droite faisant un angle $\frac{\theta}{2}$ avec l'axe (ox), on trouve θ à l'aide de la relation $a=\cos\theta, b=\sin\theta$.

5.1 Propriétés des rotations du plan.

- $r_{\theta} \circ r_{\theta'} = r_{\theta + \theta'}.$
- $-r_{\theta}^{-1}=r_{-\theta}.$
- $-\langle x,y\rangle = \|x\| \|y\| \cos \theta, \det(x,y) = \|x\| \|y\| \sin \theta, \forall (x,y) \in \mathbb{R}^2 \times \mathbb{R}^2$ faisant un angle θ entre eux.
- Toute rotation du plan d'angle θ peut être décomposeé en deux réflexions dont les axes font un angle $\frac{\theta}{2}$ entre eux.
- $-\det(x,y)$ est égal à la surface du parallélogramme de cotés x et y.

6 Automorphismes orthogonaux de l'espace.

Soit $M \in \mathcal{M}_3(\mathbb{R})$, dont les colonnes sont respectivement C_1, C_2, C_3 pour vérifier que M est une matrice orthogonale il suffit de vérifier que M est orthgonale il suffit de vérifier que $\|C_1\| = \|C_2\| = 1, \langle C_1, C_2 \rangle = \langle C_1, C_3 \rangle = \langle C_2, C_3 \rangle = 0$.

Si $C_1 \wedge C_2 = C_3$, alors det M = 1 et dans ce cas M est la matrice d'une rotation $r_{\Delta,\theta}$ d'axe Δ et d'angle θ . On trouve Δ à l'aide du système MX = X et θ à l'aide des relations $\text{Tr}(M) = 1 + 2\cos\theta$ et $\sin\theta$ de même signe que det (e_1, C_1, a) avec $e_1 = (1,0,0)$ et a vecteur qui dirige l'axe Δ .

6.1 Propriétés des rotations de l'espace.

Toute rotation de l'espace se décompose en produit de deux réflexions. $< x, y >= \|x\| \|y\| \cos \theta, \|x \wedge y\| = \|x\| \|y\| \sin \theta, \forall (x,y) \in \mathbb{R}^3 \times \mathbb{R}^3$ faisant un angle θ entre eux.

Soit r la rotation d'axe Δ dirigé par a et d'angle θ , alors $\forall x \perp \Delta$ on a : $r(x) = (\cos \theta)x + (\sin \theta)a \wedge x$.

Fin.