Resumé de cours 2: Théorie des ensembles

Lundi 20 Septembre 2004

I. Applications et ensembles :

Application: Une application $f: E \to F$ est bien définie si et seulement si:

 $\forall (x, x') \in E^2, x_1 = x_2 \Rightarrow f(x) = f(x').$

Injection: Une application $f: E \to F$ est injective $si\ et\ seulement\ si$:

 $\forall (x_1, x_2) \in E^2, f(x) = f(x') \Rightarrow x = x'.$

Surjection: Une application $f: E \to F$ est surjective si et seulement si:

 $\forall y \in F, \exists x \in E \text{ tel que} : y = f(x).$

Bijection: Une application $f: E \to F$ est bijective si et seulement si:

 $\forall y \in F, \exists ! x \in E \text{ tel que} : y = f(x).$

Image directe d'une partie : Soit $f: E \to F$, A une partie de E et $y \in F$.

 $y \in f(A)$ si et seulement si : $\exists x \in A$ tel que : y = f(x).

Propriétés: Soit $f:E\to F$, A et B deux parties de E. On a les résultats suivants:

 $f(\emptyset) = \emptyset; f(A \cup B) = f(A) \cup f(B); A \subset B \Rightarrow f(A) \subset f(B); f(A \cap B) \subset f(A) \cap f(B).$

Image réciproque d'une partie : Soit $f: E \to F$, A une partie de F et $x \in E$.

 $x \in f^{-1}(A)$ si et seulement si : $f(x) \in A$.

Propriétés: Soit $f:E\to F,\ A$ et B deux parties de F. On a les résultats suivants:

 $f^{-1}(\emptyset) = \emptyset; f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B); A \subset B \Rightarrow f^{-1}(A) \subset f^{-1}(B); f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B).$

II. Relations binaires : Dans la suite on suppose \Re une relation binaire définie sur un ensemble E.

Réflexivité : \Re est dite réflexive si et seulement si : $\forall x \in E$ on a : $x\Re x$.

Symetrie: \Re est dite symetrique si et seulement si: $\forall (x,y) \in E^2$ on a: $x\Re y \Rightarrow y\Re x$.

Antisymetrie: \Re est dite antisymetrique si et seulement si: $\forall (x,y) \in E^2$ on a:

 $(x\Re y \text{ et } y\Re x) \Rightarrow x = y.$

Relation d'équivalence : \Re est une relation d'équivalence si et seulement si : elle est à la fois réflexive, symetrique et transitive.

Exemples:

- 1. Dans \mathbb{N} , avec $n \in \mathbb{N}^*$ fixé, on pose : $a\Re b$ si et seulement si : n divise a b. On dit alors que a est congru à b modulo n et on écrit : $a \equiv b$ [n].
- 2. Dans \mathbb{R}^2 , on pose $\overrightarrow{u} \Re \overrightarrow{v}$ si et seulement si : $\exists \lambda > 0$ tel que : $\overrightarrow{u} = \lambda \overrightarrow{v}$.

Classes d'équivalence : Si \Re est une relation d'équivalence sur un ensemble E, pour tout $x \in E$, la classe d'équivalence de x est la partie de E, notée \overline{x} définie par la relation : $y \in \overline{x}$ si et seulement $si: y\Re x$.

Exemples: Pour la congruence modulo 2 dans \mathbb{N} , on a : $\overline{0} = \{0, 2, 4, 6, 8, \ldots\}$, alors que pour la congruence modulo 3 dans \mathbb{N} , on a : $\overline{0} = \{3, 6, 9, 12, 15, \ldots\}$.

 $Propriétes: Si \Re$ est une relation d'équivalence sur un ensemble E, on a les résultats suivants:

 $(\forall x \in E \text{ on a} : x \in \overline{x}) \text{ et } (\forall (x, y) \in E^2 \text{ on a} : x \Re y \Leftrightarrow \overline{x} = \overline{y}).$

Famille de parties : Soit E un ensemble et $(A_i)_{i\in I}$ une famille de parties de E, on a les définitions suivantes : $\forall x \in E, x \in \bigcup_{i \in I} \Leftrightarrow \exists i \in I \text{ tel que} : x \in A_i ; x \in \bigcap_{i \in I} \Leftrightarrow \forall i \in I \text{ on a} : x \in A_i$

Partition : Soit E un ensemble, $(A_i)_{i\in I}$ une famille de parties de E est dite une partition de E si et seulement si : elle vérifie les 3 propriétés suivantes :

- 1. $\forall i \in I \text{ on a} : A_i \neq \emptyset$.
- 2. $\forall (i,j) \in I^2 \text{ on a } : i \neq j \implies A_i \cap A_j = \emptyset.$
- $3. \ \bigcup_{i \in I} = E.$

<u>Théorème 1</u>: Soit $f: E \to F$, alors $(f^{-1}\{y\})_{y \in f(E)}$ est une partition de E.

 $\underline{Th\'{e}or\`{e}me~2}$: Les classes d'équivalence d'une relation d'équivalence définie sur un ensemble forment une partition de cet ensemble.

<u>Théorème 3</u>: Si $(A_i)_{i\in I}$ est une partition d'un ensemble E, alors on peut définir sur cet ensemble E une relation d'équivalence dont les classes d'équivalence sont exactement les parties A_i .

Relation d'ordre : \Re est une relation d'ordre si et seulement si : elle est à la fois réflexive, antisymetrique et transitive.

Exemples:

- 1. Dans \mathbb{N} , on pose : $a\Re b$ si et seulement si : $a \leq b$. Ordre usuel.
- 2. Dans \mathbb{N}^* , on pose : $a\Re b$ si et seulement si : a divise b.
- 3. Dans \mathbb{N}^2 , on pose : $(a,b)\Re(c,d)$ si et seulement si : $a \leq c$ et $b \leq d$.
- 4. Dans \mathbb{N}^2 , on pose : $(a,b)\Re(c,d)$ si et seulement si : (a < c) ou $(a = c \text{ et } b \leq d)$. Ordre lexicographique.
- 5. Dans $\mathcal{P}(E)$, on pose : $A \Re B$ si et seulement si : $A \subset B$.

Ordre total ou partiel: Une relation d'ordre \Re sur un ensemble est dite totale si et seulement si: Tous les éléments de E sont comparable avec \mathbb{R} , c'est à dire que : $\forall (x,y) \in E^2$ on a : $x\Re y$ ou $y\Re x$. Dans le cas contraire c'est à dire quand : $\exists (x,y) \in E^2$ tel que : $x\Re y$ fausse et $y\Re x$ fausse, dans ce cas on dit que \Re est une relation d'ordre partielle.

Exercice : Parmi les exemples précédents préciser les relations d'ordre qui sont totales et ceux qui ne le sont pas.

Majorant: Soit \Re une relation d'ordre sur un ensemble E et a et b deux éléments de E, on dit que b est un majorant de a quand $a\Re b$, et on dit que b est un majorant d'une partie A de E quand b est un majorant de tous les éléments de A. On dit que la partie A admet un plus grand élément s'il existe un élément de A qui majore tous les autres élément, dans ce cas il est unique et on le note $\max A$.

Minorant: Soit \Re une relation d'ordre sur un ensemble E et a et b deux éléments de E, on dit que b est un minorant de a quand $b\Re a$, et on dit que b est un minorant d'une partie A de E quand b est un minorant de tous les éléments de A. On dit que la partie A admet un plus petit élément s'il existe un élément de A qui minore tous les autres élément, dans ce cas il est unique et on le note min A.

Exercice: Trouve les min et max quan ils existent des parties $\{1, 2, 3, 6\}$; $\{2, 3, 6\}$; $\{1, 2, 3\}$; $\{2, 3\}$ où la relation d'ordre est $a\Re b$ si et seulement si a divise b.

© 2000-2004 http://www.chez.com/myismail $Mamouni\ My\ Ismail$ $CPGE\ Med\ V\text{-}Casablanca$