Série 11: Espaces vectoriels

Vendredi le 16 Janvier 2004

Exercice 1:

Montrer qu'un C-ev est aussi un R-ev, la réciproque est-elle vraie?

Exercice 2:

Soit $(a, b, c, d) \in \mathbb{R}^4$ fixé; les ensembles suivants, sont-ils des espace vectoriel?

- 1. $\{(x, y, z) \in \mathbb{R}^3 / ax + by + cz = 0\}$
- 2. $\{(x, y, z) \in \mathbb{R}^3 / ax + by + cz = d\}$
- 3. $\{(x,y) \in \mathbb{R}^3 / ax^2 + byx + cy^2 = d\}$

Exercice 3:

Montrer que les familles $\{\sqrt{2},\sqrt{3},\sqrt{6}\},\{1,\sqrt[3]{2},\sqrt[3]{3}\}$ sont libres dans $\mathbb R$ en tant que $\mathbb Q$ -ev .

Exercice 4:

Soit $a \in \mathbb{R}$ fixé $f_1: x \to \sin(x), f_2: x \to \sin(x+a), f_3: x \to \cos(x)$ montrer que $\{f_1, f_2, f_3\}$ est liée dans $F(\mathbb{R}, \mathbb{R})$.

Exercice 5:

Soit $n \in \mathbb{N}^*$ montrer que les familles suivantes $(f_k)_{0 \le k \le n}$ sont libres dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$:

$$f_k(x) = x^k; f_k(x) = e^{kx}; f_k(x) = \cos(kx); f_k(x) = \cos^k(x)$$

Exercice 6:

Soient E ev et $f, g: E \to E$ linéaires montre que : $f(ker(gof)) = ker(g) \cap Im(f)$

Exercice 7:

Soit T > 0, on pose $E = \{ f \in \wp^{\infty}(\mathbb{R}); f : T - priodique \}$

1. Montrer que la primitive d'une fonction T-périodique , f, est aussi T-périodique ssi

$$\int_0^T f(x)dx = 0$$

2. Soit $u: E \to E$ definie par u(f) = f" montrer que : $E = ker(u) \oplus Im(u)$

Exercice 8:

Soit E ev et $f,g:E\to E$ linéaires telles que f est une bijection et :

$$f \circ g = g \circ f, g^4 = 0$$

- 1. Montrer que : $(f^{-1}og)^4 = 0$.
- 2. Montrer que : $id_E f^{-1}og$ isomorphisme . $Indication : on \ pourra \ utiliser \ l'égalit\'e : id_E - u^n = (id_E - u) \sum_{k=0}^{n-1} u^k, \forall u \in \pounds \left(E \right) \ .$
- 3. Montrer que : f + g isomorphisme .

Exercice 9:

Soient E, F deux espaces vectoriels non nuls, $f: E \to F$ lineaires telles que : $\forall g \in \mathcal{L}(F, E)$; on ait $f \circ g \circ f \neq 0$. Montrer que f est bijective.

Exercice 10:

Soit E un \mathbb{R} -espace vectoriel, et f,g deux endomorphismes de E. Montrer que :

$$gof = 0 \iff Im(f) \subset Ker(g)$$

Exercice 11:

Soit E un \mathbb{R} -espace vectoriel, et f un endomorphisme de E. Montrer que :

$$Im(f) \cap Ker(f) = \{0_E\} \iff Ker(f) = Ker(f^2)$$

Donner une condition necessaire et suffisante sur f pour qu'en dimension finie on ait :

$$E = Im(f) \oplus Ker(f)$$

Exercice 12:

- 1. Soient $E = \{(x, y, z) \in \mathbb{R}^3 / x + y + z = 0\}, F = \{(a, 2a, 4a); a \in \mathbb{R}\}$. Montrer: $\mathbb{R}^3 = E \oplus F$.
- 2. Pour tout $(x, y, z) \in \mathbb{R}^3$, déterminer p((x, y, z)) la projection sur E parallélement à F et s((x, y, z)) la symétrie par rapport à E parallélement à F.

Exercice 13:

On considère p et q deux projecteurs d'un \mathbb{R} -espace vectoriel E.

- 1. Montrer que : $poq = q \iff Im(q) \subset Im(p)$.
- 2. Montrer que : p + q est un projecteur $\iff poq + qop = 0, poq = 0, qop = 0$ et que dans ce cas

2

$$Im(p) \cap Im(q) = \{0_E\}; Ker(p+q) = Ker(p) \cap Ker(q)$$

3. On suppose dans cette question que : poq = 0 .Montrer que :

$$r = p + q - qop$$
 projecteur; $Ker(r) = Ker(p) \cap Ker(q)$; $Im(r) = Im(p) \oplus Im(q)$

Exercice 14:

Soit E un \mathbb{R} -espace vectoriel et $f \in \mathcal{L}(E)$. Montrer que f est une homothétie ssi pour tout x dans E, (x, f(x)) est liée.

Exercice 15:

Soit
$$f \in \mathcal{L}(E)$$
 tel que : $f^2 + f = 0$ montrer que : $Ker(f) \oplus Ker(f+id) = E$

Exercice 16:

Soit f l'application de \mathbb{R}^3 dans lui-même définie par :

$$f(x, y, z) = (2x - y - z, x + y + 2z, 3x + z)$$

- 1. Montrer que f est un endomorphisme de \mathbb{R}^3 .
- 2. Déterminer le noyau et l'image de f . f est-elle injective ? surjective ?
- 3. Montrer que Ker(f) est une droite vectorielle dont on donnera un vecteur directeur, et trouver une partie génératrice de Im(f) de cardinal 2.

Exercice 17:

Soient E, F deux \mathbb{R} -ev de dimensions finies et $u, v : E \to F$ linéaires .

- 1. Montrer que $|rg(u) rg(v)| \le rg(u+v) \le rg(u) + rg(v)$
- 2. Discuter les cas d'égalité.

Exercice 18:

Soient E, F deux \mathbb{R} -ev de dimensions finies et $u, v : E \to F$ linéaires telles que lm(u) + lm(v) = Ker(u) + Ker(v) = E. Montrer que les deux sommes sont directes .

Exercice 19:

Soient E,F deux \mathbb{R} -ev de dimensions finies et $u:E\to F,u:F\to E$ linéaires telles vouov=v,uovou=u .Montrer que $E=lm(v)\oplus Ker(u);rg(u)=rg(v)$.

Exercice 20:

Soient E, F deux \mathbb{K} -ev et $f \in \mathcal{L}(E, F)$.

- 1. Montrer que si H est un sev de E, alors $\dim f(H) = \dim(H) \dim(H \cap \ker(f))$.
- 2. Montrer que si K est un sev de F, alors $\dim(f^{-1}(K)) = \dim(K \cap \Im(f)) + \dim(Ker(f))$.

Exercice 21:

Soit E un ev de dimension finie et $f,g\in\mathcal{L}(E)$ tels que $f\circ g=0$. Trouver une inégalité liant les rangs de f et de g. Peut-on avoir égalité ?

Exercice 22:

Soit $f \in \pounds E$ tel que $f^3 = 0$.

- 1. Montrer que $rg(f) + rg(f^2) \le \dim(E)$.
- 2. Montrer que $2rg(f^2) \leq rg(f)$.(Appliquer le théorème du rang à $f_{|\Im m(f)}$).

Exercice 23:

Soient $f, g \in \mathcal{L}(E)$ tels que $f \circ g \circ f = f$ et $g \circ f \circ g = g$.

- 1. Montrer que $E = Ker(f) \oplus \Im m(g)$.
- 2. Montrer que $f(\Im m(g)) = \Im m(f)$.

Exercice 24:

On considère que $\mathbb C$ est un $\mathbb R$ -espace vectoriel muni de la base 1,i

1. Montrer que tout endomorphisme de $\mathbb C$ peut se mettre sous la forme :

$$f(z) = az + b\overline{z}$$
 $a, b \in \mathbb{C}$

2. Montrer que f bijectif $\Leftrightarrow |a| \neq |b|$.

Exercice 25:

Permutation de coordonnées dans \mathbb{K}^n où \mathbb{K} sous corps de \mathbb{C} . Soit $\sigma \in S_n$ (groupe symétrique) et

$$f_{\sigma}: \mathbb{K}^n \longrightarrow \mathbb{K}^n$$

 $(x_1, \dots x_n) \mapsto (x_{\sigma(1)}, \dots, x_{\sigma(n)})$

On munit \mathbb{K}^n de la structure d'algèbre pour les opérations composante par composante.

- 1. Montrer que f_{σ} est un automorphisme d'algèbre.
- 2. Soit φ un automorphisme d'algèbre de \mathbb{K}^n .
 - (a) Montrer que la base canonique de \mathbb{K}^n est invariante par φ (étudier $\varphi(e_i^2)$ et $\varphi((e_i+e_j)^2)$).
 - (b) En déduire qu'il existe $\sigma \in S_n$ tel que $\varphi = f_{\sigma}$.
- 3. Montrer que $\{0\}$, $\mathbb{K}(1,\ldots,1)$, $\{(x_1,\ldots,x_n) \text{ tel que } x_1+\ldots x_n=0\}$ et \mathbb{K}^n sont les seuls sev stables par tous les endomorphismes f_{σ} .

Exercice 26:

Commutants itérés :Soit $u \in \mathcal{L}(E)$. On pose pour $v \in \mathcal{L}(E)$: $\varphi(v) = v \circ u - u \circ v$, et on note $C_i = Ker(\varphi^i)$ ($C_0 = 0$, C_1 est le commutant de u, C_2 est l'ensemble des v tels que $v \circ u - u \circ v$ commute avec u, \ldots).

- 1. Calculer $\varphi(v \circ w)$ en fonction de $v, w, \varphi(v)$ et $\varphi(w)$.
- 2. Montrer que $C = \bigcup_{i \in \mathbb{N}} C_i$ est une sous-algèbre de $\mathcal{L}(E)$ appelée Commutant de $\mathcal{L}(E)$.

Exercice 27:

Soit E un \mathbb{R} -ev de dimensuin finie et E_1, E_2 deux sev de E supplémentaires, soit f un isomorphisme de E_2 dans E_1 et g un endomorphisme de $E_2, \forall x \in E, \exists ! x_1 \in E_1, \exists ! x_2 \in E_2$ tels que $x = x_1 + x_2$ on pose alors $h(x) = f^{-1}(x_1) + f(x_2) + g(x_2)$

- 1. Montrer que h est un automorphisme de E .
- 2. Soit λ une valeur propre de h et $x=x_1+x_2$ un vecteur propre associé à λ ,avec $x_1\in E_1, x_2\in E_2$
 - (a) Montrer que $x_1 \neq 0_E, x_2 \neq 0_E, \lambda \neq 0$.
 - (b) Montrer que x_2 est un vecteur propre de g (préciser pour quelle valeur propre il est associé) .
- 3. Soit μ une valeur propre de g, y un vecteur propre associe, en déduire une valeur propre de h, et un vecteur propre associe, z, (à exprimer en fonction de y, μ).
- 4. Soit $n \in \mathbb{N}^*$. Et $(y_j)_{1 \leq j \leq n}$ une famille de vecteurs propres de g tous associes à μ et $(z_j)_{1 \leq j \leq n}$ construits avec la méthode de (c), montrer que $(y_j)_{1 \leq j \leq n}$ libre $\Rightarrow (z_j)_{1 \leq j \leq n}$ libre.

DS (2000-2001)

Exercice 28:

 $\forall x \in \mathbb{R} \text{ on pose} : f(x) = e^x, g(x) = e^{2x}, h(x) = e^{x^2}, \zeta = Vect(\{f, g, h\})$.

Soit $\varphi: \zeta \to \zeta$ définie par : $\forall F \in \zeta: \varphi(F) = af + bg + ch$ tel que :

$$a = \frac{2F(0)}{e-1} + F'(0) + \frac{2F(1)}{e\left(e-1\right)}, b = -\frac{F(0)}{e-1} - \frac{F(1)}{e\left(e-1\right)}, c = \frac{(e-2)F(0)}{e-1} - F'(0) - \frac{F(1)}{e\left(e-1\right)}$$

Soit $\psi: \zeta \to \mathbb{R}^3$ définie par : $\forall F \in \zeta: \psi(F) = (F(0), F'(0), F(1))$.

Soit $\theta: \mathbb{R}^3 \to \mathbb{R}^3$ définie par : $\forall (a, b, c) \in \mathbb{R}^3 : \theta(a, b, c) = (a, b, -c)$.

- 1. Montrer que : $\{f,g,h\}$ est libre dans $F(\mathbb{R},\mathbb{R})$,
en déduire $\dim_{\mathbb{R}}\left(\zeta\right)$.
- 2. Montrer que : ψ est un isomorphisme .
- 3. Montrer que : $\varphi = \psi^{-1} o \theta o \psi$.
- 4. Calculer $\varphi o \varphi$, en deduire la nature de φ .
- 5. Montrer que : $\forall F \in \zeta : \varphi(F) = F \Leftrightarrow F(1) = 0$.
- 6. En déduire une base de $P = \{F \in \zeta/\varphi(F) = F\}$
- 7. Trouver une base de $D = \{F \in \zeta/\varphi(F) = -F\}$.
- 8. Reconnaitre φ .

DS (2000-2001)

FIN

©: www.chez.com/myismail

Mamouni My Ismail PCSI 2 Casablanca Maroc