FEUILLE D'EXERCICES: Fonctions à deux variables.

MPSI-Maths.

Mr Mamouni : myismail1@menara.ma

Source disponible sur:

(c)http://www.chez.com/myismail

Exercice 1. Soit (ABC) un triangle du plan, déterminer les points du plan où les fonctions suivantes atteignent leurs extremums :

- 1) $f: M \to MA^2 + MB^2 + MC^2$.
- 2) $q: M \to MA + MB + MC$.
- 3) $h:: M \to MA \times MB \times MC$
- . Préciser leurs natures (minimums, maximums).

Exercice 3. Déterminer les extremums des fonctions suivantes :

- 1) $f:(x,y)\to 2x+y-x^4-y^4$.
- **2)** $q:(x,y)\to xe^y+ye^x$.
- 3) $h:(x,y)\to \frac{xy}{(1+x)(1+y)(x+y)}$.

Préciser leurs natures (minimums, maximums, locaux, globaux).

Exercice 2. Résoudre les équations différentielles suivantes :

1)
$$\left(x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y}\right)f + x^2 + y^2 = 0$$

Passer aux coordonnées polaires).

2)
$$2xy\frac{\partial f}{\partial x} + (1+y^2)\frac{\partial f}{\partial y} = 0.$$

$$Posar : x = u^2 + v^2 = u$$

Poser:
$$x = \frac{u^2 + v^2}{2}, y = \frac{u}{v}$$
.

3)
$$x^2 \frac{\partial^2 f}{\partial x \partial y} = 1.$$

4)
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{x}{y} + a \frac{\partial^2 f}{\partial x^2} = xy$$
.

$$5) \quad \frac{\partial f}{\partial x} = af.$$

Exercice 4. Calculer les intégrales doubles suivants :

1)
$$\iint_D (x^2 + y^2) dx dy \ où \left\{ D = (x, y) \in \mathbb{R}^2 \ tel \ que \ 0 \le x \le 1 - \frac{y^2}{4} \right\}.$$

2)
$$\iint_D x^2 y dx dy \text{ où } D = \{(x, y) \in \mathbb{R}^2 \text{ tel que } 0 \le x^2 + y^2 \le 1\}.$$

3)
$$\iint_{U} xy dx dy \qquad U = \{(x, y) \ tel \ que \ x \ge 0, y \ge 0, x + y \le 1\}$$

4)
$$\iint_{U} |xy| dxdy$$
 $U = \{(x,y) \text{ tel que } \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}$

5)
$$\iint_{U} (x^{2} + y^{2})^{2} dx dy \qquad U = \{(x, y) \text{ tel que } x \ge 1, y \ge 1, x + y \le 3\}$$

6)
$$\iint_{U} (1+x^2+y^2) dx dy \qquad U == \{(x,y) \text{ tel que } x^2+y^2 \le 1\}$$

Exercice 5. Calculer les intégrales triples suivants :

- 1) $\iiint_D (x^2 + y^2) dx dy dz$ où D est le tétraè dre de sommets A(2,1,0); B(2,-1,0); C(0,0,3), D(0,0,-3).
- 2) $\iiint_{D} z^{2}y dx dy dz$ où $D = \{(x, y, z) \in \mathbb{R}^{3} \text{ tel que } 0 \le x^{2} + y^{2} + z^{2} \le 1\}$

Exercice 6. Pour x > 0 on pose $g(x) = \ln(x) + 2x + 1$.

- 1) Montrer que l'équation g(x) = 0 admet une seule solution $a \in]0, \frac{1}{e}[.$
- 2) Sur $\mathbb{R}^{+*} \times \mathbb{R}$ on pose $f(x,y) = x(\ln(x) + x + y^2)$ déterminer le point critique.
- 3) Vérifier que f admet un minimum relatif en ce point et que : $\min f = -a(a+1)$.

Exercice 7. Soit $\lambda > 1$, on pose $H = \{(x,y) \in \mathbb{R}^2 \text{ tel que } x > 0\}$ et $D = \{(x,y) \in \mathbb{R}^2 \text{ tel que } x > 0, y \neq 0\}$, on se propose d'étudier les extremums de la fonction $f(x,y) = x^{\lambda}y - y^2 - y\ln(x+1) + 1$.

- 1) Pour x > 0 on pose $h(x) = x^{\lambda} \ln(x+1)$, montrer que l'équation h'(x) = 0 admet une seule solution $b \in]0, +\infty[$.
- 2) On pose h(b) = 2c, montrer que c < 0.
- 3) Montrer que l'équation h(x) = 0 admet une seule solution $a \in]0, +\infty[$ et que a > b.
- 4) Déterminer les points critiques de f, (on les exprimera en fonction de a,b,c)
- 5) Montrer que f admet un seul extremum, que l'on précisera.

Exercice 8. Soit f une fonction de classe C^1 sur \mathbb{R}^2 .

1) Calculer les dérivés partielles des fonctions suivantes :

$$g_1(x, y) = f(y, x)$$
 $g_3(x, y) = f(y, f(x, x))$

2) Calculer les dérivés des fonctions suivantes :

$$h_1(x) = f(x, x)$$
 $h_2(x) = f(x, f(x, x))$

3) Calculer les dérivés des fonctions suivantes :

$$h_1(x) = f(u(x), v(x))$$
 $h_2(x) = f(u(x), f(v(x), w(x)))$

 $O\grave{u}\ u, v, w\ trois\ fonctions\ de\ classe\ \mathcal{C}^1\ sur\ \mathbb{R}.$

Exercice 9. Laplacien.

Soit u une fonction réelle des variables réelles x et y définie par $u(x,y)=(F\circ r)(x,y)$ où $r(x,y)=\sqrt{x^2+y^2}$ et F est une fonction reelle d'une variable reelle. On pose :

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

1) Calculer:

$$\frac{\partial r}{\partial x}$$
 $\frac{\partial r}{\partial y}$ $\frac{\partial^2 r}{\partial x^2}$ $\frac{\partial^2 r}{\partial y^2}$

2) Prouver que:

$$\Delta u = F''(r) + \frac{F'(r)}{r}$$

3) En déduire Δu lorsque $u(x,y) = \ln(x^2 + y^2)$.

Fin.