RÉSUMÉ DE COURS : Groupes

FEUILLE D'EXERCICES: Cycliques.

MPSI-Maths.

Mr Mamouni : myismail1@menara.ma

Source disponible sur:

@http://www.chez.com/myismail

1 Résumé de cours.

Ordre d'un groupe.

Définition 1. Si G est un groupe, son cardinal est appellé alors l'ordre de G et noté o(G).

Vocabulaire.

Tout groupe fini est dit d'ordre fini.

Groupe engendré par un élément.

Définition 2. Soit (G, .) un groupe et $a \in G$, on appelle sous groupe engendré par a le sous-groupe de G, noté < a > formé par les puissances de a.

Autrement dit : $\langle a \rangle = \{a^n \text{ tel que} : n \in \mathbb{Z}\}.$

Remarque.

Soit (G, .) un groupe et $a \in G$, alors < a > est le plus petit sous-groupe de G contenant a.

Autrement dit : Si H est un sous-groupe de G, $a \in H \Longrightarrow < a > \subset H$. Ordre d'un élément d'un groupe.

Définition 3. Soit (G, .) un groupe et $a \in G$. L'ordre du sous-groupe engendré par a est aussi appelé l'ordre de a, et noté o(a). Autrement dit : o(<a>) = o(a).

Remarque.

Soit (G,.) un groupe et $a \in G$, alors $o(a) = 1 \iff a = e$, où e l'élément neutre de G.

Vocabulaire.

Un élément d'un groupe est dit d'ordre fini, lorsqu'il engendre un groupe fini.

Théoréme 1. Soit (G, .) un groupe et $a \in G$, alors : a est d'ordre fini $\iff \exists n \in \mathbb{N}^*$ tel que : $a^n = e$.

Théorème 2. Soit (G, .) un groupe et $a \in G$, alors : a est d'ordre fini $\iff \exists n \in \mathbb{N}^*$ tel que : $a^n = e$.

Théoréme 3. Soit (G, .) un groupe et $a \in G, n \in \mathbb{N}$, alors : $o(a) = n \iff i$ $a^n = e$.

ii) $\forall k \in \mathbb{N}$. $a^k = e \implies n$ divise k

Groupes monogènes.

Définition 4. Un groupe G est dit monogène s'il est engendré par l'un de ses éléments.

Autrement dit : $\exists a \in G \text{ tel que } : G = \langle a \rangle$.

Définition 5. Un groupe G est dit cyclique s'il est monogène et fini.

2 Exercices.

Exercice 1. Soit G un groupe et a, b deux éléments fixes de G, d'ordre finis tel que : ab = ba.

Montrer que ab est d'ordre fini avec $o(ab) = o(a) \vee o(b)$.

Exercice 2. Soit G un groupe fini et a un élément de G. Montrer que $o(a^n) = \frac{o(a)}{o(a) \wedge n}$.

Exercice 3. Soit G un groupe monogène engendré par un élément a, et H un sous-groupe de G.

- 1) Montrer que l'application : $\varphi: (\mathbb{Z}, +) \longrightarrow (G, .)$ est un morphisme de groupe.
- 2) En déduire que $\exists p \in \mathbb{N} \ tel \ que : \varphi^{-1}(H) = p\mathbb{Z}$.
- 3) En déduire que H est engendré par a^p .

Conclusion: Tout sous-groupe d'un groupe monogène est monogène.

Exercice 4. Soit G un groupe abélien, fini de cardinal n, et a un élément de G.

- 1) Montrer que l'application $\varphi_a: G \longrightarrow G$ est bijective, en $x \longmapsto a.x$ déduire que $\varphi_a(G) = G$
- 2) En faisant le produit des éléments de G et ceux de $\varphi_a(G)$, montrer que $a^n = e$.
- 3) En déduire que o(a) divise n.
- 4) En deduire que le cardinal de tout sous groupe de G divise celui de G.

Exercice 5. Soit G un groupe, dont les seuls sous-groupe sont l'élément neutre et lui même.

Montrer que G est monogène, puis fini et que son cardinal est premier.

Exercice 6. Soit G_1 et G_2 deux groupes, on muni leur produit cartesien $G_1 \times G_2$ de sa structres de groupe canonique, en posant (a,b).(c,d) = (a.c,b.d). On suppose de plus qu'il sont cycliques.

- 1) Soit $(a,b) \in G_1 \times G_2$, montrer que $o(a,b) = o(a) \vee o(b)$.
- 2) En déduire que : $G_1 \times G_2$ est cyclique si et seulement si $card(G_1) \wedge card(G_2) = 1$.

Exercice 7. Soit G un groupe et a, b deux éléments fixes de G.

- 1) Montrer que $\forall n \in \mathbb{N} \quad (ab)^{n+1} = a(ba)^n b$.
- 2) En déduire que ab est d'ordre fini si et seulement si ba est d'ordre fini avec o(ab) = o(ba).

Exercice 8. Soit G un groupe et a, b deux éléments fixes de G.

- 1) Montrer que a d'ordre fini si et seulement si a^{-1} est d'ordre fini avec $o(a^{-1}) = o(a)$.
- 2) Montrer que a d'ordre fini si et seulement si aba^{-1} est d'ordre fini avec $o(aba^{-1}) = o(a)$.

Exercice 9.

- 1) Montrer que l'ensemble $G = \{z \in \mathbb{C} \text{ tel que } : \exists n \in \mathbb{Z} \text{ tel que } : z^{2^n} = 1 \text{ est un sous groupe de } (\mathbb{C}^*, \times) \text{ infini non monogène.}$
- 2) Montrer que tout sous-groupe fini du groupe G est cyclique.

Exercice 10. Soit $n \in \mathbb{N}^*$ et $G = \mathbb{Z}/n\mathbb{Z}$. Soit $k \in \mathbb{Z}$ et $d = k \wedge n$.

- 1) Déterminer l'ordre de \dot{k} dans G.
- 2) Montrer que \dot{k} et \dot{d} engendrent le même sous-groupe de G.
- 3) Quels sont tous les sous-groupes de G?

Exercice 11. Soit $f: G_1 \longrightarrow G_2$ un morphisme de groupe et $a \in G_1$, d'ordre fini.

Montrer que f(a) est d'ordre fini avec o(f(a)) divise o(a) avec égalité si f est bijective.

Exercice 12. Théorème du rang.

Soit $f: G \longrightarrow G'$ un morphisme de groupes où G est un groupe fini. Montrer que $card(\operatorname{Ker} f) \times card(\operatorname{Im} f) = card(G)$.

Exercice 13. Décomposition d'un élément d'ordre fini.

Soit G un groupe multiplicatif et $a \in G$ d'ordre np avec $n \land p = 1$. Montrer qu'il existe $b, c \in G$ uniques tels que b est d'ordre n, c est d'ordre p, a = bc = cb.

Indication : utiliser la formule de Bézout.

Exercice 14. Groupe d'ordre pair.

Soit G un groupe fini de cardinal pair.

- 1) Montrer que l'ensemble des x tel que : $x^2 \neq e$ est de cardinal pair.
- 2) Montrer qu'il existe dans G un élément d'ordre 2.

Exercice 15. Groupe d'ordre impair.

Soit G un groupe fini de cardinal impair.

Montrer que : $\forall x \in G, \exists ! y \in G \text{ tel que : } x = y^2.$

Exercice 16. Groupe d'exposant 2.

Soit G un groupe fini tel que : $\forall x \in G, x^2 = e$.

- 1) Montrer que G est commutatif (considérer (xy)(xy)).
- 2) Soit H un sous-groupe de G et $x \in G \setminus H$. On note K le sous groupe engendré par $H \cup \{x\}$. Montrer que cardK = 2cardH.
- 3) En déduire que cardG est une puissance de 2.

Exercice 17. Théorème de Lagrange.

Soit G un groupe fini et H un sous-groupe de G. On définit une relation sur G par : $\forall x, y \in G, x \sim y \iff \exists h \in H \text{ tel que } : x = hy.$

- 1) Montrer que \sim est une relation d'équivalence.
- 2) Soit $a \in G$. Quelle est la classe de a?
- 3) Soit $a \in G$. Montrer que à est équipotent à H.
- 4) En déduire que cardH divise cardG (Théorème de Lagrange).

Exercice 18. *Groupe d'ordre* ab avec $a \wedge b = 1$.

Soit G un groupe commutatif fini d'ordre n=ab avec $a \wedge b=1$. On pose $A=\{x\in G \ tel \ que: x^a=e\}$ et $B=\{x\in G \ tel \ que: x^b=e\}$.

- 1) Montrer que A et B sont des sous-groupes de G.
- 2) Montrer que $A \cap B = \{e\}$ et que tout élément $g \in G$ s'écrit de façon sous la forme $g = g_1g_2$.

Exercice 19. Caractérisation des sous groupes d'un groupe cyclique.

Soit G un groupe cyclique d'ordre n,a un générateur de G, et $G_d = \{x \in G \text{ tel que } : x^d = 1\}.$

- 1) Soit $(c,d) \in \mathbb{N}^2$ tel que : cd = n, montrer que $G_d = \langle a^c \rangle$ et $card G_d = d$
- 2) Soit H un sous groupe de G
 - a) Justifier l'existence d'un plus petit $p \in \mathbb{N}^*$ tel que : $a^p \in H$.
 - b) Montrer que $p \le n$ et que $H = \langle a^p \rangle = G_q$ où pq = n.
 - c) Déduire une bijection entre les sous groupes de G et les diviseurs de n.
- *3)* Application:
 - a) Soit $k \in \mathbb{Z}$, déterminer en fonction de $n \wedge k$ le couple (p,q) réalisant :pq = n et $\langle a^k \rangle = \langle a^p \rangle = G_q$.
 - b) Soit H un sous groupe fini de (\mathbb{C}^*, \times) montrer que : $\exists n \in \mathbb{N}^* \text{ tel que } : H = U_n.$