FEUILLE D'EXERCICES: Groupe symétrique

MPSI-Maths.

Mr Mamouni : myismail1@menara.ma

Source disponible sur:

©http://www.chez.com/myismail

بِسمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ وَ قُلِ إِعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُمُ وَ رَسُولُهُ وَ المُؤ مِنُون

صَدَقَ اللَّهُ العَظِيم

Exercice 1. Soit $(n,p) \in \mathbb{N}^*$ tel que $p \leq n$ et $\sigma = (i_1,\ldots,i_p)$ un p-cycle.

- 1) Montrer que : $\forall \alpha \in \mathcal{S}_n$, $\alpha \sigma \alpha^{-1} = (\alpha(i_1), \dots, \alpha(i_p))$.
- 2) En déduire : $(1\ 3\ 2)(1\ 2\ 3\ 4)(1\ 2\ 3)$.
- 3) Montrer que $o(\sigma) = p$.
- 4) Montrer que : $\forall k \in \mathbb{N}^*$, $o(\sigma)^k = \frac{p}{p \wedge k}$.
- 5) En déduire que σ^k est un p-cycle $\iff k \land p = 1$.
- 6) Calculer (1 2 3 4) k , pour k = 2, k = 3.

Exercice 2...

- 1) Montrer que toute permutation dont le support est de cardinal 2 est une transposition.
- 2) Montrer que toute permutation dont le support est de cardinal 3 est une 3-cycle.
- 3) Peut-on généraliser pour une permutation dont le support est de cardinal superieur à 4.

Exercice 3. On définit sur S_n la relation suivante :

 $g\mathcal{R}f \iff i) \quad \exists h \in \mathcal{S}_n \text{ tel que } \operatorname{supp}(h) \cap \operatorname{supp}(g) = \emptyset$

ii) $supp(f) = supp(g) \cup supp(h)$ et $f = g \circ h$

On dit qu'une permutation f est irréductible quand elle vérifie la propriété suivante : $\forall g \in \mathcal{S}_n, \quad g\mathcal{R}f \Longrightarrow g = f$ ou $g = id_{[[1,n]]}$.

- 1) Donner supp $(id_{[|1,n|]})$.
- 2) Soit $f \in \mathcal{S}_n$, montrer que : $\operatorname{supp}(f) = \emptyset \iff f = id_{[|1,n|]}$. En déduire que : $id_{[|1,n|]}$ est irréductible.
- 3) Donner un exemple d'une permutation irréductible autre que $id_{[|1,n|]}$.
- 4) Soit $(g,h) \in \mathcal{S}_n^2$ tel que $\operatorname{supp}(g) \cap \operatorname{supp}(h) = \emptyset$. Montrer que : $\forall i \in [|1,n|], i \in \operatorname{supp}(g) \iff h(i) \in \operatorname{supp}(g)$.
- 5) Soit $(g, f) \in \mathcal{S}_n^2$ tels que : $g\mathcal{R}f$. Montrer que : $\operatorname{supp}(f) = \operatorname{supp}(g) \cup \operatorname{supp}(h)$, où h est la permutation citée dans la définition.
- 6) Soit $(h_1, h_2) \in \mathcal{S}_n$ tels que : $\operatorname{supp}(h_1) \cap \operatorname{supp}(h_2) = \emptyset$. Montrer que $\operatorname{supp}(h_1 \circ h_2) \subset \operatorname{supp}(h_1) \cup \operatorname{supp}(h_2)$.
- 7) En déduire que \mathcal{R} est une relation d'ordre sur \mathcal{S}_n
- 8) Montrer que : $\forall f \in \mathcal{S}_n \quad \exists p \in \mathbb{N}^*, \exists g_1, g_2, \dots, g_p$ permutations de [|1, n|] irréductibles, à supports deux à deux disjoints telles que : $f = g_1 \circ g_2 \circ \dots \circ g_p$.
- 9) Soit $f \in S_n$ irréductible, montre que f est un cycle. Étudier la réciproque.
- 10) A quel notions connues sur $\mathbb N$ ressemblent la relation $\mathcal R$ et les permutations irréductibles.