FEUILLE D'EXERICES: Fonctions usuelles

MPSI-Maths.

Mr Mamouni : myismail1@menara.ma

Source disponible sur :

@http://www.chez.com/myismail

بِسمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ وَ قُلِ إِعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُم وَ رَسُولُهُ وَ المُؤ مِنُون

صَدَقَ اللَّهُ العَظِيمِ

Exercice 1. Soient a, b sont deux nombres réels. Résoudre les systèmes suivants :

- 1) $\begin{cases} \operatorname{ch}(x) + \operatorname{ch}(y) = a \\ \operatorname{sh}(x) + \operatorname{sh}(y) = b \end{cases}$.
- 2) $\begin{cases} \operatorname{ch}(x) + \operatorname{sh}(y) = a \\ \operatorname{sh}(x) + \operatorname{ch}(y) = b \end{cases}$

Exercice 2. Résoudre les équations suivantes :

- 1) $2\arcsin(x) = \arcsin(2x\sqrt{1-x^2})$.
- 2) $\arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{4}\right) = \arctan(x)$.
- 3) $2\arctan(2) \arctan\left(\frac{1}{4}\right) = \arctan(x)$.
- 4) $\arccos(\sin(x)) + \arcsin(\cos(x)) = 1$.
- 5) $\arcsin(1) = \arcsin\left(\frac{5}{13}\right) + \arcsin(x)$.
- 6) $\arctan(2x) + \arctan(x) = \frac{\pi}{4}$.
- 7) $\arcsin(x) + \arcsin(2x) = \arccos(x) + \arccos(2x)$

Exercice 3. Déterminer tous les couples $(x,y) \in \mathbb{R}^2$ tel que :

$$\arcsin(\sin(x)) + \arccos(\cos(y)) = x + y$$

On pourra commencer par traiter le cas $x, y \in [0, 2\pi]$.

Exercice 4. Etudier les variations des fonctions definies par :

- 1) $f: x \to \arccos\left(\sin\left(2x \frac{\pi}{3}\right)\right)$.
- 2) $f: x \to \arctan\left(\sqrt{\frac{1-\sin(x)}{1+\sin(x)}}\right)$.

Exercice 5. Montrer que $\forall (x,y) \in \mathbb{R}^2$ on a :

$$\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right) + p\pi$$

où p est un entier à déterminer en discutant sur les signes .

Exercice 6. On considère la fonction : $f(x) = \operatorname{ch}\left(\frac{2x-1}{x+1}\right)$.

- 1) Etudier la fonction f et tracer sa courbe représentative.
- 2) La courbe coupe l'asymptote parallèle à l'axe des abscisses en un point A, calculer l'abscisse de A.

Exercice 7. Simplifier les expressions suivantes $\ln\left(\sqrt{\frac{1+ \operatorname{th}(x)}{1-\operatorname{th}(x)}}\right)$, $\frac{1+ \operatorname{th}^2(x)}{1-\operatorname{th}^2(x)}$.

Exercice 8. Soit la fonction $y = \sin(n \arcsin x)$. Montrer que $\forall n \in \mathbb{N} : (1 - x^2)y'' - xy' + n^2y = 0$

Exercice 9. Soit $x \in]0,1]$. On pose $y = \arccos(x)$.

- 1) Exprimer en fonction de $x, \cos(y), \sin(y)$ et $\tan(y)$.
- 2) En déduire que $\arccos(x) = \arctan\left(\frac{\sqrt{1-x^2}}{x}\right)$.
- 3) Si x = 0, quelle est la valeur de arccos(x)?.

Exercice 10. On considère la fonction : $f(x) = \arcsin\left(\frac{2x}{1+x^2}\right) - 2\arctan(x)$.

- 1) Quel est l'ensemble de définition de f. Calculer f'.
- 2) En déduire une expression simple de f sur des intervalles à choisir.
- 3) Dessiner la représentation graphique de f.

Exercice 11. .

- 1) Soit $(a,b) \in \mathbb{R}^2 : \cos(a)\cos(b) \neq 0$. Montrer que : $\tan(a) + \tan(b) = \frac{\sin(a+b)}{\cos(a)\cos(b)}$.
- 2) Résoudre les équations suivantes :
 - a) $\tan(x) = \tan(2x)$.
 - **b)** $\tan(x) = -\tan(2x)$.
 - c) $\tan(2x) = \tan\left(\frac{x}{2}\right)$

Exercice 12. Montrer que:

- 1) $\forall x \in \mathbb{R}$, $\arctan x + 2\arctan(\sqrt{1+x^2} x) = \frac{\pi}{2}$.
- 2) $\forall x \in]0,1], \ 2\arctan\sqrt{\frac{1-x}{x}} + \arcsin(2x-1) = \frac{\pi}{2}.$

Exercice 13. Polynômes de Chebychev.

Pour $n \in \mathbb{N}$, et $x \in [-1, 1]$, on pose $f_n(x) = \cos(n \arccos x)$ $g_n(x) = \frac{\sin(n \arccos x)}{\sqrt{1 - x^2}}$

Montrer que f_n et g_n sont des fonctions polynomiales.

Exercice 14. Olympiades.

- 1) On sait que $\forall x \in \mathbb{R} : \cos^2(x) + \sin^2(x) = 1$, résoudre l'équation : $\cos^n(x) + \sin^n(x) = 1$ pour $n \geq 3$.
- 2) On sait que $\cos(2x) = \cos^2(x) \sin^2(x)$, pour tout réel x. Pour quelles valeur de x, a-t-on :
 - a) $\cos(3x) = \cos^3(x) \sin^3(x)$.
 - **b)** $\cos(4x) = \cos^4(x) \sin^4(x)$.
- 3) Trouver les réels x tel que $a = \tan\left(\frac{\pi}{12} x\right), b = \tan\left(\frac{\pi}{12}\right)$ et $c = \tan\left(\frac{\pi}{12} + x\right)$ forment une progression géométrique dans cet ordre.

Indication: On pourra remarquer que $ac = b^2$.

4) Résoudre le système :

$$\begin{cases} \tan(x_1) + 3\cot(x_2) &= 2\tan(x_2) \\ \tan(x_2) + 3\cot(x_3) &= 2\tan(x_1) \end{cases}$$

$$\vdots$$

$$\tan(x_n) + 3\cot(x_n) &= 2\tan(x_1)$$

Fin.