.

Corrigé DS 7 (07-08) : Intégration sur un segment Équations différentielles

EXERCICES

Vus en TD.

PREMIER PROBLÈME

Première partie

1) a)
$$S_{n+1} - S_n = \frac{1}{(n+1)^2} \ge 0$$
, donc (S_n) est croissante.

b)
$$k \le t \le k+1 \implies \frac{1}{(k+1)^2} \le \frac{1}{t^2} \le \frac{1}{k^2}$$

 $\implies \frac{1}{(k+1)^2} = \int_k^{k+1} \frac{1}{(k+1)^2} dt \le \int_k^{k+1} \frac{1}{t^2} dt \le \int_k^{k+1} \frac{1}{k^2} dt = \frac{1}{k^2}$

c) D'aprés la question précédente on a :

$$S_n = 1 + \sum_{k=1}^{n-1} \frac{1}{(k+1)^2} \le 1 + \sum_{k=1}^{n-1} \int_k^{k+1} \frac{1}{t^2} dt = 1 + \int_1^n \frac{1}{t^2} dt$$

d) D'aprés la question précédente on a : $S_n \le 1 + \int_1^n \frac{1}{t^2} dt = 1 + \left[-\frac{1}{n} \right]_1^n = 2 - \frac{1}{n} \le 2$, donc (S_n) est majorée or elle est croissante donc converge vers une limite finie l

2) a) D'aprés 1.b) moyennant un changement de variable on en déduit que $\int_{k}^{k+1} \frac{1}{t^2} dt \le \frac{1}{k^2} \le \int_{k-1}^{k} \frac{1}{t^2} dt$, donc $\int_{n+1}^{n+p+1} \frac{1}{t^2} dt = \sum_{k=n+1}^{n+p} \int_{k}^{k+1} \frac{1}{t^2} dt \le \sum_{k=n+1}^{n+p} \frac{1}{k^2} \le \sum_{k=n+1}^{n+p} \int_{k-1}^{k} \frac{1}{t^2} dt = \int_{n}^{n+p} \frac{1}{t^2} dt$, d'aprés l'inégalité précédente on a, aprés intégration : $\frac{1}{n+1} - \frac{1}{n+p+1} \le S_{n+p} - S_n \le \frac{1}{n} - \frac{1}{n+p}$, quand $p \longrightarrow +\infty$ avec n fixé on obtient $\frac{1}{n+1} \le l - S_n \le \frac{1}{n}$.

b) $S_4 = 1 + \frac{61}{144} = 0.7986$ donc $1.62 = \frac{1}{5} + S_4 \le l\frac{1}{4} + S_4 = 1.67$

Deuxième partie

1) a)
$$\int_{0}^{1} \underbrace{(ct^{2} + dt)}_{u} \underbrace{\cos(k\pi t)}_{v'} dt = \frac{1}{k\pi} \underbrace{\left[(ct^{2} + dt)\sin(k\pi t) \right]_{0}^{1}}_{\text{nul}} - \frac{1}{k\pi} \int_{0}^{1} \underbrace{(2ct + d)\sin(k\pi t)}_{u} dt$$
$$= \frac{1}{k^{2}\pi^{2}} \left[(2ct + d)\cos(k\pi t) \right]_{0}^{1} - \frac{2c}{k^{2}\pi^{2}} \int_{0}^{1} \cos(k\pi t) dt$$
$$= \frac{(2c + d)(-1)^{k} - d}{k^{2}\pi^{2}} - \frac{2c}{k^{3}\pi^{3}} \underbrace{\left[\sin(k\pi t)\right]_{0}^{1}}_{\text{nul}}$$

- b) Il suffit de choisir a, b réels tels que : $(2a + b)(-1)^k d = \pi^2$, autrement dit solutions du système suivant : $\begin{cases} 2a = \pi^2 \\ -2a 2b = \pi^2 \end{cases}$, donc $a = \frac{\pi^2}{2}$ et $b = -\pi^2$.
- c) $\int_0^1 (at^2 + bt) \left(\frac{1}{2} + \sum_{k=1}^n \cos(k\pi t) \right) dt = \frac{1}{2} \int_0^1 (at^2 + bt) dt + \sum_{k=1}^n \int_0^1 (at^2 + bt) \cos(k\pi t) dt$ $= \frac{2a + 3b}{12} + \sum_{k=1}^n \frac{1}{k^2} = \frac{2a + 3b}{12} + S_n$

2)
$$1 + 2\sum_{k=1}^{n} \cos(2k\theta) = \Re\left(1 + 2\sum_{k=1}^{n} e^{2ik\theta}\right)$$

$$= \Re\left(1 + 2e^{2i\theta} \frac{1 - e^{2i\theta}}{1 - e^{2i\theta}}\right) \qquad \text{(somme d'une suite g\'eom\'etrique)}$$

$$= \Re\left(1 + 2e^{2i\theta} \frac{-2i\sin(n\theta)e^{in\theta}}{-2i\sin(n\theta)e^{i\theta}}\right) \qquad (1 - e^{2i\alpha} = -2i\sin(\alpha)e^{i\alpha})$$

$$= \Re\left(1 + 2\frac{\sin(n\theta)e^{i(n+1)\theta}}{\sin(\theta)}\right)$$

$$= \Re\left(1 + 2\frac{\sin(n\theta)e^{i(n+1)\theta}}{\sin(\theta)}\right)$$

$$= 1 + 2\frac{\sin(n\theta)\cos((n+1)\theta)}{\sin(\theta)}$$

$$= \frac{\sin(\theta) + 2\sin(n\theta)\cos((n+1)\theta)}{\sin(\theta)}$$

$$= \frac{\sin((2n+1)\theta))}{\sin(\theta)} \qquad (2\sin a\cos b = \sin(a+b) + \sin(a-b))$$

- 3) a) Simple intégration par parties avec $u = f(t), v' = \sin(\lambda t)$.
 - b) f est de classe C^1 sur [0,1] donc f et f' sont bronée sur [0,1], d'autre part $|\cos(\lambda t)| \le 1$, donc d'aprés la formule précédente on conclut que : $\left| \int_0^1 f(t) \sin(\lambda t) dt \right| \le \frac{M}{\lambda} \xrightarrow[+\infty]{} 0$

Troisième partie

- 1) a) f est continue sur]0,1] en tant que rapport de fonctions continues, d'autre part au voisinage de 0, on a $\sin t \sim t$, donc $f(t) \sim \frac{\pi(t-2)}{2} \longrightarrow -\pi = f(0)$, donc f est continue en 0.
 - b) f est dérivable sur]0,1] en tant que rapport de fonctions continues. En Maple© les calculs donnent :

>
$$f:=t->(pi^2*(t^2-2*t))/(4*sin(pi*t/2));$$

$$f:=t\mapsto 1/4\frac{\pi^2(t^2-2t)}{\sin(1/2\pi t)}$$
> $D(f);$

$$t\mapsto 1/4\frac{\pi^2(2t-2)}{\sin(1/2\pi t)}-1/8\frac{\pi^3(t^2-2t)\cos(1/2\pi t)}{(\sin(1/2\pi t))^2}$$
> $limit(D(f)(t),t=0);$

- c) D'aprés le TAF $\frac{f(t)-f(0)}{t}=f'(c)\xrightarrow[0]{\pi}\frac{\pi}{2}$, donc f est dérivable en 0, avec $f'(0)=\frac{\pi}{2}$.
- d) f est de classe C^1 sur]0,1] en tant que rapport de fonctions de classe C^1 , de plus $\lim_{t \to 0} f'(t) = f'(0) = \frac{\pi}{2}$ donc de classe C^1 en 0.
- 2) On sait d'aprés Partie II, 1,a) que $a = \frac{\pi^2}{2}$ et $b = -\pi^2$, puis en prenant $\theta = \frac{\pi}{2}$ dans Partie II, 2) on trouve que $(at^2 + bt) \left(\frac{1}{2} + \sum_{k=1}^n \cos(k\pi t)\right) = f(t)\sin(2n+1)\frac{\pi t}{2}$.
- 3) D'aprés Partie II, 1,c) on a $S_n = \int_0^1 (at^2 + bt) \left(\frac{1}{2} + \sum_{k=1}^n \cos(k\pi t)\right) dt \frac{2a+3b}{6}$, au passage à la limite et d'aprés Partie II, 3, b) on conclut que $l = -\frac{2a+3b}{6} = \frac{\pi^2}{6}$. En Maple© les calculs donnent :
 - > evalf(Pi^2/6);

1.64

Première partie

- 1) L'équation caréctéristique de l'équation différentielle y'' + y = 0 est $r^2 + 1 = 0$ dont les racines sont i et -i, donc la forme générale des solutions est $y_H(x) = A \cos x + B \sin x$, ainsi Σ_0 est un \mathbb{R} -ev dont (C, S) est genératrice, comme elle est libre, car non propoprtionnelles, donc c'est une base.
- 2) a) S_{λ} est solution de $\Sigma_{\lambda} \iff a(\lambda^2 + 1) = 1 \iff a = \frac{1}{\lambda^2 + 1}$.
 - b) S_{λ} est une solution particulière de l'équation avec second membre, donc la forme générale de telles solutions est $y(x) = y_H(x) + S_{\lambda}(x)$.
 - c) Découle immédiatement de la question précédente.
 - d) $S_{\lambda}(x) = a \sin(\lambda x)$ est $\frac{2k\pi}{\lambda}$ -périodique avec $k \in \mathbb{Z}$. Supposons que $E_{\sqrt{2}}$ admet une solution $y(x) = A \cos x + B \sin x + S_{\sqrt{2}}(x)$ est 2π -périodique, donc $S_{\sqrt{2}}(x)$ est aussi 2π -périodique, donc $\exists k \in \mathbb{Z}$ tel que $\frac{2k\pi}{\sqrt{2}} = 2\pi$, d'où $k = \sqrt{2} \in \mathbb{Z}$, absurde.

Deuxième partie

- 1) φ_1 et φ_2 sont dérivables, en tant que primitives de fonctions continues, avec $\varphi'_1(x) = f(x) \cos x$ et $\varphi'_2(x) = f(x) \sin x$.
- 2) a) Evident, $car \sin(x-t) = \sin x \cos t \cos x \sin t$.
 - b) φ est dérivable sur \mathbb{R} en tant que somme et produit de fonctions dérivable, avec $\varphi'(x) = \varphi_1(x)\cos x + \underbrace{\varphi'_1(x)\sin x \varphi'_2(x)\cos x}_{\text{nul}} + \varphi_2(x)\sin x$ $= \varphi_1(x)\cos x + \varphi_2(x)\sin x$
 - c) φ est deux dérivable sur \mathbb{R} , car φ est dérivable sur \mathbb{R} en tant que somme et produit de fonctions dérivable, avec $\varphi''(x) = -\varphi_1(x) \sin x + \underbrace{\varphi_1'(x) \cos x + \varphi_2'(x) \sin x}_{f(x)} + \varphi_2(x) \cos x$, donc $\varphi''(x) + \varphi(x) = f(x)$, autrement dit φ solution de \mathcal{E}_f .
- 3) Soit g une autre solution de \mathcal{E}_f , donc $\varphi'' + \varphi = f$ et g'' + g = f, en faisant la différence on obtient y'' + y = 0 où $y = g \varphi$. D'aprés partie I, 1) on a : $y(x) = \alpha \cos x + \beta \sin x$, donc $g(x) = y(x) + \varphi(x) = \alpha \cos x + \beta \sin x + \int_0^x f(t) \sin(x-t) dt$
- 4) a) Plus que évident.
 - b) D'aprés Partie II, 3) on conclut que $h(x) = \alpha \cos x + \beta \sin x + \int_0^x f(t) \sin(x-t) dt$ et $h(x) = \alpha \cos(x+\pi) + \beta \sin(x+\pi) + \int_0^{x+\pi} f(t) \sin(x+\pi-t) dt$, en sommant ces égalités, en utilisant la relation de Chasles et les formules $\cos(x+\pi) = -\cos, \sin(x+\pi) = -\sin x$, on obtient $h(x+\pi) + h(x) = \int_x^{x+\pi} f(t) \sin(x-t) dt$. D'autre part $f_1(t) \ge 0$ et $\sin(x-t) \ge 0$ pout $x \le t \le x + \pi$.
- 5) a) i. D'aprés Partie II, 3) on a : $\varphi(x) = g(x) \alpha \cos x \beta \sin x$ est 2π -périodique en tant que somme de fonctions périodiques.

- ii. φ est 2π -périodique, donc $\varphi(x+2\pi)=\varphi(x)$ pour tout réel x, d'où $\int_0^{x+2\pi} f(t)\sin(x+2\pi-t)\mathrm{d}t = \int_0^x f(t)\sin(x-t)\mathrm{d}t$, d'où $\int_0^{2\pi} f(t)\sin(x-t)\mathrm{d}t + \int_{2\pi}^{x+2\pi} f(t)\sin(x-t)\mathrm{d}t = \int_0^x f(t)\sin(x-t)\mathrm{d}t$. En effectuant le changement de variable $u=t-2\pi$ et vu que f et sin sont 2π -périodiques, on trouve que $\int_{2\pi}^{x+2\pi} f(t)\sin(x-t)\mathrm{d}t = \int_0^x f(u)\sin(x-u)\mathrm{d}u = \int_0^x f(t)\sin(x-t)\mathrm{d}t$, d'où $\int_0^{2\pi} f(t)\sin(x-t)\mathrm{d}t = 0$. Pour tout réel x, on a : $\int_0^{2\pi} f(t)\sin(x-t)\mathrm{d}t = 0$, donc $\sin x \int_0^{2\pi} f(t)\cos t\mathrm{d}t \cos x \int_0^{2\pi} f(t)\sin t\mathrm{d}t = 0$. Pour x=0, on trouve $\int_0^{2\pi} f(t)\sin t\mathrm{d}t = 0$, pour $x=\frac{\pi}{2}$, on trouve $\int_0^{2\pi} f(t)\cos t\mathrm{d}t = 0$.
- b) Si $\int_0^{2\pi} f(t) \sin t dt = \int_0^{2\pi} f(t) \cos t dt = 0$, alors $\int_0^{2\pi} f(t) \sin(x t) dt = \sin x \int_0^{2\pi} f(t) \cos t dt \cos x \int_0^{2\pi} f(t) \sin t dt = 0$, donc φ qui est une solution particulière de \mathcal{E}_f est 2π -périodique, donc (d'aprés Partie II, 3) toute autre solution g de \mathcal{E}_f est 2π -périodique.
- c) Si $f(t) = \sin t$, alors $\int_0^{2\pi} f(t) \sin t dt = \int_0^{2\pi} \sin^2 t dt = \frac{1}{2} \int_0^{2\pi} (1 \cos(2t) dt = \pi \neq 0$, donc d'aprés la question précédente, \mathcal{E}_f n'admet aucune solution 2π -périodique.

Fin