CORRIGÉ DS 3 : Arithmétiques. Groupes cycliques. Suites numériques.

MPSI-Maths.

Mr Mamouni & El Hassani : myismail1@menara.ma

Source disponible sur:

(c)http://www.chez.com/myismail

Lundi 10 Décembre 2007.

Durée: 3 heures 30mn.

Problème 1. (Fonction indicatrice d'Euler.)

- 1) n est premier $\iff k \land n = 1, \ \forall 1 \le k \le n \iff \varphi(n) = 1.$
- 2) $k \wedge n = 1 \iff \exists u, v \in \mathbb{Z} \text{ tel que } nu + kv = 1$ $\iff \exists v \in \mathbb{Z} \text{ tel que } \underline{k}v \equiv 1 \ [n]$ $\iff \exists v \in \mathbb{Z} \text{ tel que } \overline{k} \ \overline{v} = 1$ $\iff \overline{k} \text{ est inversible dans } \mathbb{Z}/n\mathbb{Z}$
- 3) $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un corps $\iff \forall 1 \leq k \leq n, \overline{k}$ est inversible dans $\mathbb{Z}/n\mathbb{Z}$ $\iff \forall 1 \leq k \leq n, \ k \wedge n = 1$ $\iff n \text{ est premier}$
- 4) $\operatorname{card} U(\mathbb{Z}/n\mathbb{Z}) = \operatorname{card} \{k \in [|1, n|] \text{ tel que } k \wedge n = 1\} = \varphi(n)$
- 5) Soit $(m, n) \in \mathbb{N}^*$ tel que $n \wedge m = 1$.

- a) On vérifie d'abord que $\theta(\overline{1},\overline{1}) = \overline{1}$, $\theta(\overline{a} + \overline{c}, \overline{b} + \overline{d}) = \varphi(\overline{a}, \overline{b}) + \varphi(\overline{c}, \overline{d})$ et enfin $\theta(\overline{a} \, \overline{c}, \overline{b} \, \overline{d}) = \theta(\overline{a}, \overline{b}) \, \theta(\overline{c}, \overline{d})$ Injection : Montrer que Ker $(\theta) = \{(\overline{0}, \overline{0})\}$. Surjection : Les ensembles de départ et d'arrivées ont même cardinal.
- b) \overline{x} inversible dans $\mathbb{Z}/n\mathbb{Z}$, \overline{y} inversible dans $\mathbb{Z}/m\mathbb{Z}$, est evident par définition de l'inversiblilié. $(\overline{x}, \overline{y})$ inversible dans $\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \iff \theta(\overline{x}, \overline{y})\overline{xy}$ inversible dans $\mathbb{Z}/nm\mathbb{Z}$, car θ est un isomorphisme.
- c) D'aprés la question précédente, on a :

$$\begin{array}{ll} \varphi(nm) &= \mathbf{card} \left(U(\mathbb{Z}/nm\mathbb{Z}) \right) \\ &= \mathbf{card} \left(U(\mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z}) \right) \\ &= \mathbf{card} \left(U(\mathbb{Z}/n\mathbb{Z}) \times U(\mathbb{Z}/m\mathbb{Z}) \right) \\ &= \varphi(n) \varphi(m) \end{array}$$

- Par récurrence sur r.
- $\varphi(p^{\alpha}) = \mathbf{card}\{k \in [|1, p^{\alpha}|] \text{ tel que } k \wedge p^{\alpha} = 1\}$ $= p^{\alpha} - \mathbf{card}\{k \in [|1, p^{\alpha}|] \text{ tel que } k \wedge p \neq 1\}$ $= p^{\alpha} - \operatorname{card}\{k \in [|1, p^{\alpha}|] \text{ tel que } p \text{ divise } k\}$ $= p^{\alpha} - \mathbf{card}\{k = qp \text{ tel que } q \in [|1, p^{\alpha-1}|]\}$ $= p^{\alpha} - p^{\alpha-1}$
- Application:
 - a) Posons $n=\prod_{i=1}^n p_i^{\alpha_i}$, avec $p_1<\cdots< p_r$, donc $\varphi(n)=$ $\varphi\left(\prod_{i=1}^r p_i^{\alpha_i}\right) = \prod_{i=1}^r \varphi(p_i^{\alpha_i}) = \prod_{i=1}^r p_i^{\alpha_i-1}(p_i-1), \text{ si } \varphi(n) \text{ divise } n,$ alors $\prod_{i=1}^{r} (p_i - 1)$, qui est pair divise $\prod_{i=1}^{r} p_i$, ceci est impossible si $r \geq 3$ car 4 divisera $\prod p_i$, le seul cas possible est r=2avec $p_1 = 2, p_2 = 3$.
 - b) Le nombre de fractions $\frac{k}{n}$, tel que $1 \le k \le n$ qu'on peut mettre sous la forme $\frac{a}{d}$, avec $a \wedge d = 1$ est $\varphi(d)$, or au total il y a exactement n fraction, donc $\sum_{d \text{ divise } n} \varphi(d) = n$.

Problème 2. (Groupes cycliques)

- 1) Soit $(x,y) \in G^2$, or $G = \langle a \rangle$, donc $\exists (p,q) \in \mathbb{Z}^2$ tel que $x = a^p, y = a^q$, **donc** $x.y = a^{p+q} = y.x$.
- 2) Posons p = kq, donc $x \in \langle a^p \rangle \Longrightarrow x = a^{\alpha p} = a^{\alpha kq} \in \langle a^q \rangle$.

- a) On a o(a) = n, donc $a^n = e$ et $(a^k)^{\frac{n}{n \wedge k}} = (a^n)^{\frac{k}{n \wedge k}} = e$, d'où $m = o(a^k)$ divise $\frac{n}{n \wedge k}$, d'autre part $a^{mk} = (a^k)^m = e$, donc o(a) = n divise mk, donc $\frac{n}{\frac{n}{n + k}}$ divise $m \frac{k}{\frac{n}{n + k}}$, or $\frac{n}{n \wedge k} \wedge \frac{k}{n \wedge k}$, donc $\frac{n}{n \wedge k}$ divise m.
 - **b)** $G = \langle a^k \rangle \iff \mathbf{card} G = o(a^k) \iff n = \frac{n}{n \wedge k} \iff k \wedge n = 1.$
 - c) Le nombre des générateurs de G est celui des entier k, tel que $1 \le k \le n$ tel que $k \wedge n = 1$, c'est à dire $\varphi(n)$.
- Il est clair que $1 \in \mathbb{U}_n$. Soit $z_1, z_2 \in \mathbb{U}_n$, alors $(z_1 z_2^{-1})^n = \frac{z_1^n}{z_n^n}$, donc $z_1z_2^{-1} \in \mathbb{U}$, d'où \mathbb{U} est un sous-groupe de (\mathbb{C}^*, \times) .

D'autre part: $\mathbb{U}_n = \{e^{i\frac{2k\pi}{n}}, \ 0 \le k \le n-1\} = < w > \text{où } w = e^{i\frac{2\pi}{n}},$ donc monogène, or il est fini de cardinal, n, donc cyclique.

Il y exactement $\varphi(n)$ racines $n^{\text{ème}}$ primitives de l'unité, ce sont les w^k tel que, $1 \le k \le n$ et $k \land n = 1$..

Pour n = 3, w = j, les racines primitives sont j et j^2 . Pour n = 4, w = i, les racines primitives sont i et $i^3 = -i$.

a) Il est trés simple de montrer que H_d est un sous groupe de (G,.), en vérifiant que, $e \in H(e^d = e)$ et que si $(x,y) \in H^2$, $(x^d = y^d = e)$, alors $x.y^{-1} \in H_d$ car $(x.y^{-1})^d = x^dy^{-d} = e$. Montrons maintenant que $H_d = \langle a^{\frac{n}{d}} \rangle$, par double inclusion, en utilisant surtout que o(a) = n.

-
$$x \in H_d \subset G = \langle a \rangle$$
 $\Longrightarrow x = a^p, x^d = e$
 $\Longrightarrow x = a^p, a^{pd} = e$
 $\Longrightarrow x = a^p \text{ et } n \text{ divise } pd$
 $\Longrightarrow x = a^p \text{ et } \frac{n}{d} \text{ divise } p = k\frac{n}{d}$
 $\Longrightarrow x = a^k\frac{n}{d} \in \langle a^{\frac{n}{d}} \rangle$
- Inversement, $x \in \langle a^{\frac{n}{d}} \rangle$ $\Longrightarrow x = a^k\frac{n}{d} \Longrightarrow x^d = a^{nk} = e$

- $\implies x \in H_d$
- b) Soit H un sous groupe de (G, .).
 - i. Cette question a été déjà traité en TD, les étapes à suivre sont les suivantes.

- Montrer que f est un morphisme de groupe.
- En déduire que $f^{-1}(H)$ est un sous-groupe de $(\mathbb{Z},+)$, donc de la forme $p\mathbb{Z}$.
- Montrer par double inclusion que $H = \langle a^p \rangle$.
- ii. Puisque $p \wedge n$ divise p, alors $\langle a^p \rangle \subset \langle a^{p \wedge n} \rangle$, d'autre part $\operatorname{card} \langle a^{p \wedge n} \rangle = o(a^{p \wedge n}) = \frac{n}{n \wedge (p \wedge n)} = \frac{n}{p \wedge n} = o(a^p)$ $= \operatorname{card} \langle a^p \rangle$
- 6) La surjection découle de la question 5.b.ii), car pour tout $h \in \mathcal{H}, \exists d = p \land n \in \mathcal{D}_n$ tel que $H = H_d$.

L'injection, soit $d_1, d_2 \in \mathcal{D}_n$,

$$\Phi(d_1) = \Phi(d_2) \implies H_{d_1} = H_{d_2}$$

$$\implies \left\langle a^{\frac{n}{d_1}} \right\rangle = \left\langle a^{\frac{n}{d_2}} \right\rangle$$

$$\implies o(\frac{n}{d_1}) = o(\frac{n}{d_1})$$

$$\implies \frac{n}{n \wedge \frac{n}{d_1}} = \frac{n}{n \wedge \frac{n}{d_2}}$$

$$\implies d_1 = d_2$$

donc Φ est bijective.

7) Comme Φ est bijective, alors le nombre de sous groupes dans G, est égale a celui des diviseurs de $n=p^{\alpha}$, qui sont les p^k tel que $0 \le k \le \alpha$, il y en a exactement $\alpha + 1$.

Problème 3. (Étude d'une suite récurrente)

Préliminaire : Étudier la foction ln(1+x) - x sur $[-1, +\infty[$.

- 1) a) $1 u_{n+1} = (1 u_n)(1 \delta u_n)$.
 - b) On montre d'abord (facile) par récurrence que $0 \le u_n \le 1$, donc (u_n) est croissante, car $u_{n+1} u_n = \delta u_n (1 u_n)$, d'où $u_n \ge u_0 = a$.
 - c) (u_n) est croissante, majorée par 1, donc converge versl l tel que $0 = \delta l(1-l)$ or $u_n \geq \delta > 0$, donc $l \geq \delta > 0$, d'où l=1.
- 2) a) $1 u_{n+1} = (1 \delta u_n)(1 u_n) \le (1 \delta a)(1 u_n)$, car $a \le u_n \le 1$.

- b) Par récurrence.
- c) $0 \le \delta, u_k \le 1 \Longrightarrow 1 \delta u_k \ge 1 \delta \ge 0 \Longrightarrow$ $\ln x_{k+1} \ln x_k = \ln \frac{1 \delta u_k}{1 \delta} \ge 0$, d'autre part : $\ln \frac{1 \delta u_k}{1 \delta} = \ln \left(1 + \frac{\delta (1 u_k)}{1 \delta} \right) \le \frac{\delta (1 u_k)}{1 \delta} \le \frac{\delta}{1 \delta} (1 a) q^k.$
- d) $S_{n+1} S_n = \ln x_{n+1} \ln x_n \ge 0$, donc S_n est croissante, d'autre part $S_n \le \sum_{k=0}^{n-1} \frac{\delta}{1-\delta} (1-a)q^k$ $= \frac{\delta}{1-\delta} (1-a) \frac{1-q^n}{1-q}$ $\le \frac{\delta}{1-\delta} (1-a) \frac{1}{1-q}$

donc majorée et par suite converge.

- e) S_n est une somme téléscopique, avec $S_n = \ln x_n \ln x_0$ qui converge vers S, donc $\ln x_n = S_n + \ln x_0$ converge vers $S + \ln x_0$, d'où x_n converge vers $\mu = e^S x_0 = e^S (1-a) > 0$, donc $x_n = \frac{1-u_n}{(1-\delta)^n} \sim \mu$, donc $1-u_n \sim \mu(1-\delta)^n$.
- a) On a: $\frac{y_{k+1}}{y_k} = \frac{u_{k+1}}{u_k} \frac{1 u_k}{1 u_{k+1}} \frac{(1+\delta)^n}{(1+\delta)^{n+1}}$ $= \frac{1 + \delta(1 u_k)}{(1+\delta)(1 \delta u_k)}$ $= \frac{(1+\delta)(1 \delta u_k) + \delta^2 u_k}{(1+\delta)(1 \delta u_k)}$ $= 1 + \frac{\delta^2 u_k}{(1+\delta)(1 \delta u_k)}$
- b) On remarque d'abord que :

$$\ln\left(\frac{(1-a)y_n}{a(1-u_n)(1+\delta)^n}\right) = \ln\left(\frac{y_n}{(1-u_n)(1+\delta)^n}\right) - \ln\left(\frac{a}{1-a}\right)$$
$$= \ln y_n - \ln y_0$$
$$= T_n$$

Il sufit donc de montrer que $0 \le T_n = \sum_{k=0}^{n-1} \ln \frac{y_{k+1}}{y_k} \le \frac{n\delta^2}{1-\delta^2}$.

En effet,

$$\frac{y_{k+1}}{y_k} = 1 + \frac{\delta^2 u_k}{(1+\delta)(1-\delta u_k)} \ge 1 \Longrightarrow \ln \frac{y_{k+1}}{y_k} \ge 0 \Longrightarrow T_n \ge 0.$$

D'autre part,
$$\ln \frac{y_{k+1}}{y_k} = \ln \left(1 + \frac{\delta^2 u_k}{(1+\delta)(1-\delta u_k)} \right)$$

$$\leq \frac{\delta^2 u_k}{(1+\delta)(1-\delta u_k)}$$

$$= \frac{\delta^2}{(1-\delta^2)} \cdot \frac{u_k(1-\delta)}{1-\delta u_k}$$

$$= \frac{\delta^2}{(1-\delta^2)} \cdot \frac{u_k - \delta u_k}{1-\delta u_k}$$

$$\leq \frac{\delta^2}{(1-\delta^2)}$$

Donc,
$$T_n = \sum_{k=0}^{n-1} \ln \frac{y_{k+1}}{y_k} \le \sum_{k=0}^{n-1} \frac{\delta^2}{(1-\delta^2)} = n \frac{\delta^2}{(1-\delta^2)}.$$

4) a)
$$\left[\frac{t}{\delta}\right] \leq \frac{t}{\delta} \leq \left[\frac{t}{\delta}\right] + 1 \Longrightarrow \left[\frac{t}{\delta}\right] \delta \leq t \leq \left(\left[\frac{t}{\delta}\right] + 1\right) \delta$$
.

b)
$$\left[\frac{t}{\delta}\right]\delta \le t \le \left(\left[\frac{t}{\delta}\right] + 1\right)\delta \Longrightarrow t - \delta \le \left[\frac{t}{\delta}\right]\delta \le t$$
,

donc $\lim_{\delta \to 0} \left[\frac{t}{\delta} \right] \delta = t$.

$$\ln(1+\delta)^{\left[\frac{t}{\delta}\right]} = \left[\frac{t}{\delta}\right] \ln(1+\delta) = \left(\left[\frac{t}{\delta}\right]\delta\right) \frac{\ln(1+\delta)}{\delta} \longrightarrow t.$$

Donc
$$\lim_{\delta \to 0} (1 + \delta)^{\left[\frac{t}{\delta}\right]} = e^t$$

c) Posons
$$n = \left[\frac{t}{\delta}\right]$$
, donc $n\delta^2 = \left(\left[\frac{t}{\delta}\right]\delta\right)\delta \longrightarrow 0$,
or $0 \le T_n = \ln y_n - \ln y_0 \le \frac{n\delta^2}{1 - \delta^2}$, d'où $\lim_{\delta \to 0} y_n = y_0$, d'autre part $y_n = \frac{u_n}{(1 - u_n)(1 + \delta)^n}$, donc $u_n = \frac{y_n}{y_n + \frac{1}{(1 + \delta)^n}} \longrightarrow \frac{y_0}{y_0 + \mathrm{e}^{-t}}$, avec $y_0 = \frac{a}{1 - a}$.

Exercice. (Groupe symétrique)

Vu en TD

- 1) $(\alpha\sigma\alpha^{-1})\alpha(i_1)=(\alpha\sigma)(i_1)=\alpha(i_2)$, et ainsi de suite.
- 2) $(1 \ 3 \ 2)(1 \ 2 \ 3 \ 4)(1 \ 2 \ 3)=(3 \ 1 \ 2 \ 4)$, prendre $\alpha=(1 \ 3 \ 2)$ et $\sigma=(1 \ 2 \ 3 \ 4)$.
- 3) $(1234)^2 = (13)(24)$ et $(1234)^3 = (1432)$.

Fin.