Devoir Libre 1 : Dénombrement

A rendre Vendredi le 26-Septembre-2003

Probléme 1:

<u>Nombre de surjections</u>: Pour tout $(n,p) \in \mathbb{N}^2$ on note par $S_{n,p}$ le nombre de surjections de [|1,n|] sur [|1,p|].

- 1. Que peut-on dire de $S_{n,p}$ si p > n?
- 2. Déterminer $S_{n,1}, S_{n,n}$.
- 3. Combien peut-on trouver d'applications de [|1, n|] dans [|1, 2|] non-surjectives? En déduire $S_{n,2}$.
- 4. Montrer que : $S_{n,3} = 3^n 3 3S_{n,2}$. En déduire la valeur de $S_{n,3}$.

 <u>Indication :</u>On pourra commencer d'abord par déterminer le nombre d'applications non-surjectives de [|1,n|] sur [|1,3|]
- 5. Soit $(k,p) \in \mathbb{N}^2$ tels que : $0 \le k < p$, montrer alors que : $\sum_{q=k}^p (-1) C_p^q C_q^k = 0$.
- 6. Montrer pour tout $(n,p) \in \mathbb{N}^2$ que : $S_{n,p} = p^n \sum_{k=1}^{p-1} C_p^k S_{n,k}$.
- 7. En déduire pour tout $(n,p) \in \mathbb{N}^2$ que : $S_{n,p} = \sum_{k=1}^p (-1)^{p-k} k^n C_p^k$
- 8. En déduire les valeurs des sommes suivantes :
 - (a) $\sum_{k=1}^{n} (-1)^{n-k} k^n C_n^k$
 - (b) $\sum_{k=1}^{n} (-1)^{n-k} k^{n+1} C_n^k$

Probléme 2:

<u>Théorème des chapeaux</u>: Pour tout $n \in \mathbb{N}^*$ on note par D_n le nombre de bijections de [|1,n|] dans lui même, sans point fixes, c-a-d $f(i) \neq i, \forall i \in [|1,n|]$. On les appelle les dérangements de [|1,n|]. Par convention $D_0 = 1$.

- 1. Montrer que : $\forall n \in \mathbb{N} : n! = \sum_{k=0}^{n} C_n^k D_k$.
- 2. Soit $(k,p) \in \mathbb{N}^2$ tels que : $0 \le k < p$, montrer alors que : $\sum_{q=k}^p (-1) C_p^q C_q^k = 0$.
- 3. En déduire que : $D_n = (-1)^n \sum_{k=0}^n (-1)^k C_n^k k!$
- 4. Démontrer que : $\frac{D_n}{n!} \longrightarrow \frac{1}{e}$ quand $n \longrightarrow +\infty$.

Intérprétation : Si n personnes déposent tous leurs chapeaux en entrant dans une salle puis en sortant chacun en prend un au hasard la probabilité pour qu'aucun ne reprend le chapeau qu'il a déposé a la rentrée tend vers $\frac{1}{e}$.

FIN

©: www.chez.com/myismail

Mamouni My Ismail PCSI 2 Casablanca Maroc