DS 1: Théorie des ensembles - Dénombrement

Lundi 29 Septembre 2003

Durée : 2 heures

Exercice 1:

Pour tout
$$n \in \mathbb{N}^*$$
, on pose $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$ et $u_n = \frac{S_n}{\sqrt{n}}$.

- 1. Par récurrence, montrer que $\forall n \in \mathbb{N}^* : S_n \leq \sqrt{n-1} + \sqrt{n} \ (1.5 \ point)$.
- 2. Par récurrence, montrer que $\forall n \in \mathbb{N}^* : S_n \geq 2\sqrt{n+1} 2$ (1.5 point).
- 3. En déduire la limite de S_n puis celle de u_n quand $n \longrightarrow +\infty$ (1 point).

Exercice 2:

Pour $n \in \mathbb{N}^*$, simplifier les expressions suivantes :

$$S_n = \sum_{k=1}^n \frac{k}{(k+1)!}$$
; $P_n = \prod_{k=2}^n \left(1 - \frac{1}{k^2}\right)$; $Q_n = \prod_{k=0}^{n-1} \left(1 + \frac{C_n^k}{C_n^{k+1}}\right)$.

(2 points) pour chaque somme simplifiée.

Exercice 3:

$D\'{e}finition$:

- 1. Soit $(a, b) \in \mathbb{R}^2$ tels que a < b et f :]a, b[on dit que f est continue en un point $x_0 \in]a, b[\iff (\forall \varepsilon > 0), (\exists \eta > 0) \text{ tel que } : (\forall x \in]a, b[), (|x x_0| \leqslant \eta \Longrightarrow |f(x) f(x_0)| \leqslant \varepsilon)$.
- 2. Soit $(a, b) \in \mathbb{R}^2$ tels que a < b et f :]a, b[on dit que f est continue sur $]a, b[\iff f$ est continue en tout point $x_0 \in]a, b[$.

<u>Question</u>: Soit $(a,b) \in \mathbb{R}^2$ tels que a < b et f :]a,b[. Ecrire la négation de : f est continue sur]a,b[avec des quantificateurs (2 points).

Exercice 4:

- 1. Dans un ensemble E a n éléments combien peut-on former de parties qui contiennent une partie fixe A, elle formée par p éléments ? (2 points).
- 2. Sur un ensemble E à n éléments combien peut-on définir de relations binaires ? (2 points) . Penser a la définition des relations binaires à l'aide des graphes .
- 3. Parmi ces relations binaires combien sont-elles reflexives? (2 points).
 Penser a la définition des relations binaires reflexives à l'aide des graphes et à utiliser la question (1).
- 4. Combien peut-on trouver de couples (A,B) de parties de E telles que $A \subset B \subset E$? (2 points)

FIN