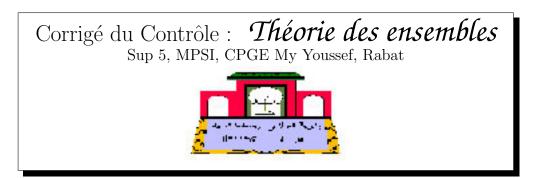
.

بِسمِ اللَّهِ الرَّحمَنِ الرَّحِيمِ وَ قُلِ إِعْمَلُوا فَسَيَرَى اللَّهُ عَمَلَكُم وَ رَسُولُهُ وَ النُو مِنُون صَدَقَ اللَّهُ العَظِيمِ



Lundi 22 Septembre 2008

Durée: 1 heure

Corrigé du problème.

1) a) Reflexivité: $\forall f \in \mathcal{A}$, on a $f\mathcal{R}f$ (prendre $h = id_{\mathbb{R}}$). Symétrie: $f\mathcal{R}g \iff \exists h \in \mathcal{B} \text{ tel que } g = h \circ f \circ h^{-1}$ $\iff \exists k \in \mathcal{B} \text{ tel que } f = k \circ g \circ k^{-1}$ (prendre $k = h^{-1}$) $\iff g\mathcal{R}f$

Transitivité: $f\mathcal{R}g, g\mathcal{R}w \iff \exists h, k \in \mathcal{B} \text{ tel que } g = h \circ f \circ h^{-1}, w = k \circ g \circ k^{-1}$ $\implies \exists r \in \mathcal{B} \text{ tel que } w = r \circ f \circ r^{-1} \text{ (prendre } r = k \circ h)$ $\iff f\mathcal{R}w$

- b) i. $f \in \overline{id_{\mathbb{R}}} \iff \exists h \in \mathcal{B} \text{ tel que } f = h \circ id_{\mathbb{R}} \circ h^{-1} \Longrightarrow f = id_{\mathbb{R}}, \text{ d'où } \overline{id_{\mathbb{R}}} = \{id_{\mathbb{R}}\}.$
 - ii. De façon pareille on montre que $\overline{\theta} = \{\theta\}$ où θ désigne l'application nulle.
- c) i. Non bien sûR, tout ce qu'on peut affirmer c'est que $f = h \circ f \circ h^{-1} \iff f \circ h = h \circ f$.
 - ii. $h \in \mathcal{C}_f \iff h \in \mathcal{B}, f = h \circ f \circ h^{-1} \iff h^{-1} \in \mathcal{B}, f = h^{-1} \circ f \circ h \iff h^{-1} \in \mathcal{C}_f.$ $h_1, h_2 \in \mathcal{C}_f \iff h_1, h_2 \in \mathcal{B}, f = h_1 \circ f \circ h_1^{-1}, f = h_2 \circ f \circ h_2^{-1} \implies h_2 \circ h_1 \in \mathcal{B}, f = h_2 \circ h_1 \circ f \circ h_1^{-1} \circ h_2^{-1} = h_2 \circ h_1 \circ f \circ (h_2 \circ h_1)^{-1} \implies h_2 \circ h_1 \in \mathcal{C}_f.$
- d) i. Supposons que f est injective, comme f et g sont conjuguées alors $\exists h \in \mathcal{B}, g = h \circ f \circ h^{-1}$, donc g est injective en tant que composée d'applications injectives. La reciproque est pareille puisque f et g jouent des rôles symétriques.
 - ii. Pareil que la question précédente.

- e) i. $f \sim g \iff \exists h \in \mathcal{B}, g = h \circ f \circ h^{-1} \implies g^n = (h \circ f \circ h^{-1})^n = h \circ f \circ h^{-1} \circ h \circ f \circ h^{-1} \circ \cdots h \circ f \circ h^{-1} = h \circ f^n \circ h^{-1} \implies f^n \sim g^n$.
 - ii. $f \sim g \Longleftrightarrow \exists h \in \mathcal{B}, g = h \circ f \circ h^{-1} \Longrightarrow g^{-1} = (h \circ f \circ h^{-1})^{-1} = h \circ f^{-1} \circ h^{-1} \Longrightarrow f^{-1} \sim g^{-1}$.
- f) i. $f \sim g, f(a) = a \iff \exists h \in \mathcal{B}, g = h \circ f \circ h^{-1} \implies f(a) = a, g \circ h = h \circ f \implies g(h(a)) = h(f(a)) = h(a) \implies h(a) \text{ est un point fixe de } a.$ Ainsi l'application h induit une bijection de l'ensemble des points fixes de f vers ceux de g (à rédiger, c'est simple).
 - ii. L'application f n'admet aucun point fixe, alors g en admet un a=0, donc ne sont pas équivalentes.
 - iii. L'application f n'admet aucun point fixe, alors g en admet un a=-1, donc ne sont pas équivalentes.
- 2) a) $h([-1,1]) = h \circ \cos(\mathbb{R}) = h \circ \cos \circ h^{-1}(\mathbb{R}) = \sin(\mathbb{R}) = [-1,1].$
 - b) cos n'est pas injective sur [-1,1] ($\cos(-1)=\cos(1)$), alors que sin est injective sur [-1,1], puisque $[-1,1]\subset [-\frac{\pi}{2},\frac{\pi}{2}]$, donc $h^{-1}\circ\sin\circ h$ est injective en tant que composée d'applications injectives .
 - c) On a montré que cos n'est pas injective, alors que $h^{-1} \circ \sin \circ h = \cos$ est injective, c'est absurde puisque $\cos = h^{-1} \circ \sin \circ h$.
- 3) a) $e^z e^{-z} = u \iff e^{2z} 1 = ue^z \iff X^2 uX 1 = 0$ où $X = e^z$ dont les solutions sont $X_1 = e^{z_1} = \frac{u \sqrt{u^2 + 4}}{2} < 0, X_2 = e^{z_2} = \frac{u + \sqrt{u^2 + 4}}{2} > 0.$ Donc $z_2 = \ln \frac{u + \sqrt{u^2 + 4}}{2}$ est l'unique solution réelle de l'équation $e^z e^{-z} = u$, alors que $e^{z_1} = \frac{u \sqrt{u^2 + 4}}{2} < 0$ n'admet pas de solution dans $\mathbb R$ posons $z_1 = x_1 + iy_1$ et $r = -\frac{u \sqrt{u^2 + 4}}{2} > 0$, l'équation devient $e^{x_1}e^{iy_1} = re^{i\pi}$, d'où $x_1 = r = -\frac{u \sqrt{u^2 + 4}}{2}$ et $y_1 \equiv \pi$ [2π], i.e., $y_1 = (2k + 1)\pi$, $k \in \mathbb{Z}$ donc une infinité de solutions complexes.
 - b) On a $\sinh: \mathbb{R} \longrightarrow \mathbb{R}$, d'aprés ce qui précède l'équation $\sinh x = u$ $x \longmapsto \frac{e^x e^{-x}}{2}$ équivalente à $e^x e^{-x} = 2u$ admet une unique solution dans \mathbb{R} , qui est $x = \ln(u + \sqrt{u^2 + 2})$, ainsi l'application réciproque de \sinh , est définie par la relation $\sinh^{-1}: \mathbb{R} \longrightarrow \mathbb{R}$. $x \longmapsto \ln(2x + \sqrt{x^2 + 2})$
 - c) $g \circ \sinh(x) = 2 \sinh x \sqrt{1 + \sinh^2(x)} = 2 \sinh x \sqrt{\cosh^2(x)}$ où $\cosh(x) = \frac{e^x + e^{-x}}{2} 0$, donc $g \circ \sinh(x) = 2 \sinh(x) \cosh(x) = \sinh(2x)$, d'où $\sinh^{-1} \circ g \circ \sinh(x) = 2x = f(x)$, ainsi f et g sont conjugués.

Fin.