295 EML_MATS

BANQUE COMMUNE D'ÉPREUVES

Concepteur: EM LYON

Première épreuve (option scientifique)

MATHÉMATIQUES

Lundi 30 avril 2007 de 8 heures à 12 heures

Les candidats ne doivent faire usage d'aucun document; l'utilisation de toute calculatrice et de tout matériel électronique est interdite. Seule l'utilisation d'une règle graduée est autorisée.

Premier problème

On considère l'application

frapplication
$$f: [0; +\infty[\longrightarrow \mathbb{R}, \ x \longmapsto f(x) = \begin{cases} \frac{\ln(1+x)}{x} & \text{si } x > 0 \\ 1 & \text{si } x = 0. \end{cases}$$

Partie I Étude de l'application f

- 1. Montrer que f est continue sur $[0; +\infty[$.
- 2. On considère l'application

$$A: [0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto A(x) = \frac{x}{1+x} - \ln(1+x).$$

- **a.** Montrer que f est de classe C^1 sur $]0; +\infty[$ et que, pour tout $x \in]0; +\infty[$, $f'(x) = \frac{A(x)}{x^2}$.
- **b.** Montrer que f' admet $-\frac{1}{2}$ comme limite en 0 à droite.
- c. Démontrer que f est de classe C^1 sur $\left[0\,;+\infty\right[$ et préciser f'(0).

d. Dresser le tableau de variation de A.

En déduire que f est strictement décroissante sur $[0; +\infty[$.

- e. Déterminer la limite de f en $+\infty$.
- 3. On considère l'application

$$B: \left[0; +\infty\right[\longrightarrow \mathbb{R}, \ x \longmapsto B(x) = -\frac{3x^2 + 2x}{(1+x)^2} + 2\ln(1+x).$$

- **a.** Montrer que f est deux fois dérivable sur $]0; +\infty[$, et que, pour tout $x \in]0; +\infty[$, $f''(x) = \frac{B(x)}{x^3}$.
- **b.** Dresser le tableau de variation de B.

En déduire que f est convexe sur $]0; +\infty[$.

4. Tracer l'allure de la courbe représentative de f.

Partie II

Un développement en série

1. Montrer, pour tout $N \in \mathbb{N}$ et tout $t \in [0;1]$:

$$\frac{1}{1+t} = \sum_{k=0}^{N} (-1)^k t^k + \frac{(-1)^{N+1} t^{N+1}}{1+t}.$$

2. En déduire, pour tout $N \in \mathbb{N}$ et tout $x \in [0;1]$:

$$\ln(1+x) = \sum_{k=0}^{N} \frac{(-1)^k x^{k+1}}{k+1} + J_N(x),$$

où on a noté $J_N(x) = \int_0^x \frac{(-1)^{N+1} t^{N+1}}{1+t} dt$.

- **3.** Établir, pour tout $N \in \mathbb{N}$ et tout $x \in [0;1]$: $|J_N(x)| \leq \frac{x^{N+2}}{N+2}$
- **4.** En déduire que, pour tout $x \in [0;1]$, la série $\sum_{n \ge 1} \frac{(-1)^{n-1} x^n}{n}$ converge et que :

$$\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} x^n}{n}.$$

Partie III

Égalité d'une intégrale et d'une somme de série

1. Montrer, en utilisant le résultat de II.3., pour tout $N \in \mathbb{N}$ et tout $x \in [0;1]$:

$$\left| f(x) - \sum_{k=0}^{N} \frac{(-1)^k x^k}{k+1} \right| \leqslant \frac{x^{N+1}}{N+2}$$

2. Montrer que la série $\sum_{n \ge 1} \frac{(-1)^{n-1}}{n^2}$ converge et que : $\int_0^1 f(x) \, \mathrm{d}x = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2}$.

3. Montrer, pour tout $N \in \mathbb{N}^*$:

$$\begin{cases} \sum_{n=1}^{2N+1} \frac{1}{n^2} = \sum_{p=0}^{N} \frac{1}{(2p+1)^2} + \sum_{p=1}^{N} \frac{1}{4p^2} \\ \sum_{n=1}^{2N+1} \frac{(-1)^{n-1}}{n^2} = \sum_{p=0}^{N} \frac{1}{(2p+1)^2} - \sum_{p=1}^{N} \frac{1}{4p^2} \end{cases}$$

4. On admet que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. Montrer : $\int_0^1 f(x) \, dx = \frac{\pi^2}{12}$.

Partie IV

Recherche d'extremum pour une fonction réelle de deux variables réelles

On note
$$F:]0; +\infty[\longrightarrow \mathbb{R}, x \longmapsto F(x) = \int_0^x f(t) dt$$

et $G:]0; +\infty[^2 \longrightarrow \mathbb{R}, (x,y) \longmapsto G(x,y) = F(xy) - F(x) - F(y).$

- 1. Montrer que G est de classe C^2 sur $]0; +\infty[^2]$. Exprimer, pour tout $(x,y) \in]0; +\infty[^2]$, les dérivées partielles premières et secondes de G en (x,y) en fonction de x, y, f(x), f(y), f(xy), f'(x), f'(y), f'(xy).
- **2.** Établir que G admet (1,1) comme unique point critique.
- **3.** Est-ce que G admet un extremum local?

DEUXIÈME PROBLÈME

On note n un nombre entier fixé supérieur ou égal 2, E le sous-espace vectoriel de $\mathbb{R}[X]$ constitué des polynômes de degré inférieur ou égal à n et $\mathcal{B} = (1, X, ..., X^n)$ la base canonique de E.

Partie I

Étude d'un endomorphisme de E

1. Montrer que, pour tout polynôme P de E, le polynôme $((X^2-1)P)''$ est élément de E, où $((X^2-1)P)''$ désigne le polynôme dérivée seconde de $(X^2-1)P$.

On note $\phi: E \longrightarrow E$ l'application qui, à tout polynôme P de E, associe $\phi(P) = ((X^2 - 1)P)''$.

- **2.** Vérifier : $\phi(1) = 2$, $\phi(X) = 6X$.
- 3. Montrer que ϕ est un endomorphisme de E.
- **4.** Calculer $\phi(X^k)$ pour tout $k \in \{0, ..., n\}$ et écrire la matrice A de ϕ dans la base \mathcal{B} .

- **5. a.** Montrer que ϕ admet n+1 valeurs propres deux à deux distinctes que l'on notera $\lambda_0, \lambda_1, \ldots, \lambda_n$ avec $\lambda_0 < \lambda_1 < \cdots < \lambda_n$.
 - **b.** Est-ce que ϕ est bijectif?
 - c. Montrer que ϕ est diagonalisable et déterminer, pour tout $k \in \{0, ..., n\}$, la dimension du sousespace propre de ϕ associé à λ_k .
- **6.** Soient $k \in \{0, ..., n\}$ et P un vecteur propre de ϕ associé à la valeur propre λ_k .
 - a. Montrer que le degré du polynôme P est égal à k.
 - **b.** Montrer que le polynôme Q défini par Q(X) = P(-X) est un vecteur propre de ϕ associé à λ_k .
- 7. En déduire qu'il existe une unique base $(P_0, P_1, ..., P_n)$ de E constituée de vecteurs propres de ϕ telle que, pour tout $k \in \{0, ..., n\}$, P_k est un polynôme de degré k, de coefficient dominant égal à 1 et vérifiant $P_k(-X) = (-1)^k P_k(X)$.

 Que peut-on en déduire sur la parité de P_k ?
- **8.** Calculer P_0 , P_1 , P_2 , P_3 .

Partie II

Un produit scalaire sur E

1. Montrer que l'application : $(P,Q) \longmapsto (P \mid Q) = \int_{-1}^{1} (1-x^2)P(x)Q(x) dx$ est un produit scalaire sur E.

On munit dorénavant E de ce produit scalaire noté (. | .).

- 2. a. À l'aide d'intégrations par parties, établir que ϕ est un endomorphisme symétrique de E.
 - **b.** Montrer que la base (P_0, P_1, \ldots, P_n) de E obtenue à la question **I.7** est orthogonale.

Soit $j \in \{1, ..., n\}$.

- **3.** a. Montrer que pour tout polynôme S de degré inférieur ou égal à j-1, on a : $(S \mid P_i) = 0$.
 - **b.** En considérant $(1 | P_j)$, montrer que P_j ne garde pas un signe constant sur l'intervalle]-1; 1[.
 - c. En déduire que P_j admet au moins, dans l'intervalle]-1; 1[, une racine d'ordre de multiplicité impair.
- **4.** On note $\{x_1, \ldots, x_m\}$ l'ensemble des racines d'ordre de multiplicité impair de P_j appartenant à l'intervalle]-1; 1 [et $S_m=(\mathbf{X}-x_1)(\mathbf{X}-x_2)\cdots(\mathbf{X}-x_m)$.
 - **a.** Justifier : $m \leq j$.
 - **b.** Montrer que le polynôme $S_m P_j$ (produit des polynômes S_m et P_j) garde un signe constant sur l'intervalle]-1; 1[.
 - **c.** En considérant $(S_m | P_j)$, montrer que m = j.
 - **d.** En déduire que P_j admet j racines simples réelles toutes situées dans l'intervalle]-1; 1[.

