DS 4: Fonctions réelles

Jeudi le 15 Janvier 2004

Corrigé

Maxi-Probléme :

Partie I - Question préliminaire

Par récurrence :La formule (2) est vraie pour n=1 et, si elle est vraie au rang n, l'application de la formule (1) en x + na donne la formule au rang n + 1.

Partie II - Quelques propriétés des fonctions lipschitziennes

- II.1) Résultat du cours.
- II.2) Résultat du cours.
- II.3) Résultat du cours pour la 1ére question ,pour la 2éme la réponse est non.Contre-exepmle : f(x) = x, g(x) = x sont à dérivées bornées sur \mathbb{R} donc lipchitzienne mais fg ne l'est pas.
 - II.4) Soit $f \in \mathcal{L}$. $\forall x \in \mathbb{R}$, $|f(x)| \leq |f(0)| + K_f|x|$.
- II.5) Soit $(x, y) \in \mathbb{R}^2$, par exemple $x \ge y$, et $n = \mathbb{E}[x y]$. Alors $f(x) f(y) = \sum_{k=0}^{n-1} [f(x k) y]$ f(x-k-1)] + f(x-n) - f(y). Donc $|f(x) - f(y)| \le M(n+x-n-y)$, et $|f(x) - f(y)| \le M(x-y)$. Donc $f \in \mathcal{L}$.

Partie III - Étude de (1) pour $|\lambda| \neq 1$

III.A - On suppose dans cette sous-partie que $|\lambda| < 1$.

a) On admet que, pour tout $x \in \mathbb{R}$, la suite $\sum_{n=0}^{N} \lambda^n f(x+na)$ quand $N \longrightarrow +\infty$ et on notera par F(x) cette limite.

b)
$$F$$
 vérifie (1) : $F(x) = \lim_{N \longrightarrow +\infty} \sum_{n=0}^{N} \lambda^n f(x+na), F(x+a) = \lim_{N \longrightarrow +\infty} \sum_{n=0}^{N-1} \lambda^n f(x+(n+1)a), \lambda F(x+a) = \lim_{N \longrightarrow +\infty} \sum_{n=0}^{N-1} \lambda^{n+1} f(x+(n+1)a) = \lim_{N \longrightarrow +\infty} \sum_{n=1}^{N} \lambda^n f(x+na), F(x) - F(x+a) = f(x)$. On a utilisé ici le résultat suivant : $\lim_{N \longrightarrow +\infty} u_N = l \Rightarrow \lim_{N \longrightarrow +\infty} u_{N-1} = l$

$$F \in \mathcal{L} : \text{Soit } (x,y) \in \mathbb{R}^2 : |F(x) - F(y)| = \left| \lim_{N \longrightarrow +\infty} \left(\sum_{n=0}^N \lambda^n [f(x+na) - f(y+na)] \right) \right| \leqslant \lim_{N \longrightarrow +\infty} \sum_{n=0}^N |\lambda|^n K_f |x-y| = K_f |x-y| \lim_{N \longrightarrow +\infty} \sum_{n=0}^N |\lambda|^n = \frac{K_f}{1-\lambda} |x-y|.$$
Unicité : Soit G une fonction de \mathcal{L} vérifiant (1), $G - F$ est une fonction de \mathcal{L} vérifiant $\forall x \in \mathbb{R}$,

 $(G-F)(x)=\lambda(G-F)(x+a)=\lambda^n(G-F)(x+na), \text{ pour tout } n\in\mathbb{N}, \text{ donc } |(G-F)(x)|\leqslant n$

 $|\lambda|^n \left(A|x+na|+B\right) \underset{n \to +\infty}{\longrightarrow} 0 \text{ donc } F = G \text{ .Noter Bien } n|\lambda|^n \underset{n \to +\infty}{\longrightarrow} 0 \quad \text{si} \quad |\lambda| < 1 \ .$

III.A.2) Étude de trois cas particuliers

a)
$$f_1(x) = 1$$
. $F_1(x) = \frac{1}{1-\lambda}$.

b) et c) $\sum_{n=0}^{N} \lambda^n \exp(i(x+na)) = e^{ix} \frac{1-\lambda^{N+1} e^{i(N+1)x}}{1-\lambda e^{ia}} \xrightarrow[N \to +\infty]{} \frac{e^{ix}-\lambda e^{i(x-a)}}{1-2\lambda \cos a + \lambda^2} \cdot F_2$ et F_3 sont les parties réelle et imaginaire de la somme qui vient d'être calculée.

$$F_2(x) = \frac{\cos x - \lambda \cos(x - a)}{1 - 2\lambda \cos a + \lambda^2} \quad , \quad F_3(x) = \frac{\sin x - \lambda \sin(x - a)}{1 - 2\lambda \cos a + \lambda^2} \cdot$$

III.B -

III.B.1)

a) .

b) En remplaçant λ par $\frac{1}{\lambda}$ et a par -a et f(x) par $\frac{-f(x-a)}{\lambda}$ dans II.A.1.a et b), on obtient le résultat pour $|\lambda| > 1$.

III.B.2).

a),b) et c) Avec la même remarque précedente on trouve que $:F_1, F_2, F_3$ ne changent pas d'expressions.

Partie IV - Étude de (1) pour
$$|\lambda| = 1$$

IV.A - .

IV.A.1) $\forall x \in \mathbb{R}, f(x) = F(x) - F(x+a), \text{ d'où } |f(x)| \leq K_F|a|.$ f est donc bornée.

IV.A.2

- a) Prendre :sin $\left(\frac{2\pi x}{a}\right)$.
- b) Non : $F(x) + \sin\left(\frac{2\pi x}{a}\right)$ vérifie aussi (1).

IV.A.3).

- a) En faisant tendre λ vers 1 dans (5), on obtient l'expression $F(x) = \frac{\cos x \cos(x-a)}{2(1-\cos a)}$ ($\cos a \neq 1$). Cette fonction F est lipschitzienne car somme de deux fonctions lipschitzienness et vérifie $F(x) F(x+a) = \cos x$ pour tout x (passage à la limite quand λ tend vers 1 dans (1), vérifiée par F_2 .
- b) Soit $F \in \mathcal{L}$ vérifiant (1). Donc $F(x) = F(x + 2n\pi) + n \cos x$. Donc $F((2n + 1)\pi) = F(2\pi) + n$ et $F(2n\pi) = F(0) n$, on obtient, pour tout n, $F((2n + 1)\pi) F(2n\pi) = 2n + F(\pi) F(0) \underset{n \to +\infty}{\longrightarrow} +\infty$, or $F \in \mathcal{L}$, donc $|F((2n + 1)\pi) F(2n\pi)| \leq K_F \pi$ est bornée. Absurde. Il n'y a donc aucune fonction de \mathcal{L} vérifiant (1).

IV.B -

IV.B.1)

- a) Prendre $\sin\left(\frac{\pi x}{a}\right)$ par exemple.
- b) Non : la fonction $x \mapsto F(x) + \sin\left(\frac{\pi x}{a}\right)$ est une autre fonction de \mathcal{L} vérifiant (1) aussi. IV.B.2)
 - a) Même rédaction que IV.A.3.a.
- b) Soit $F \in \mathcal{L}$ vérifiant (1). Donc, $F(x) = (-1)^n F(x+n\pi) + n \cos x$. Donc $F((2n+1)\pi) = F(\pi) + 2n$ et $F(2n\pi) = F(0) 2n$, on obtient, pout tout n, $F((2n+1)\pi) F(2n\pi) = 4n + F(\pi) F(0)$, pareil qu'en IV.a.3.b on trouve une contradiction.

IV.B.3)

a) Classique ,vu en TD

b) F vérifie $(1): \forall x \in \mathbb{R}, \ F(x) + F(x+1) = \lim_{N \longrightarrow +\infty} \sum_{n=0}^{N} (-1)^n \left[f(x+n) + f(x+n+1) \right] = \lim_{N \longrightarrow +\infty} \left(f(x) + (-1)^{N+1} f(x+N+1) \right)$ (car somme telescopique) = f(x) car $\lim_{t \to \infty} f = 0$. $\lim_{t \to \infty} F = 0$: Soit $N \in \mathbb{N}$ comme f décroissante on a : $\left| \sum_{n=p}^{N} (-1)^n f(x+n) \right| \leqslant f(x) + (-1)^N f(x+N)$. (par récurrence sur N). à la limite quand $N \longrightarrow +\infty$ on obtient : $0 \leqslant |F(x)| \leqslant f(x) \xrightarrow[x \longrightarrow +\infty]{} 0$.

Moyen-Probléme:

$Partie\ A$:

- 1. On a $g'(x) = \frac{1-x}{x^2}$ les limites en $-\infty$, $+\infty$ et 0^- sont évidentes. $g(x) = \frac{x-1-x \ln |x|}{x}$, d'où $\lim_{0^+} g(x) = -\infty$. On a g'(x) > 0 sur \mathbb{R}_+^* , donc g est continue et strictement croissante et établit une bijection de $]-\infty$, 0[vers \mathbb{R} (car les limites aux bornes de l'intervalle sont $-\infty$ et $+\infty$), donc il existe un unique $\alpha \in \mathbb{R}_+^*$ tel que $g(\alpha) = 0$. $\alpha \simeq -3$, 59.
- 2. C'est du calcul : on obtient $u(x) = -3 + \frac{4}{x} \frac{1}{x^2} + 2 \ln x$. On en tire $u'(x) = \frac{2(x-1)^2}{x^3}$: la fonction u est croissante strictement sur $[1, +\infty[$ avec u(1) = 0, donc h'(x) > 0 sur $]1, +\infty[$.

Partie B:

1. f est définie sur $\mathbb{R}\setminus\{0,1\}. \lim_{-\infty}f=\lim_{+\infty}f=1. \lim_{0}f=+\infty. \lim_{1}f=e.$

2.
$$\frac{f(1+t)-f(1)}{t} = \frac{e^{\frac{\ln(1+t)}{t}}-e}{t} = e^{\left(\frac{e^{\frac{\ln(1+t)}{t}}-1}-1}\right) = e^{\left(\frac{e^{\frac{\ln(1+t)}{t}}-1}-1\right)} \left(\frac{e^{\frac{\ln(1+t)}{t}}-1}-1\right) \left(\frac{e^{\frac{\ln(1+t)}{t}}-1}-1\right) = e^{\left(\frac{e^{x}-1}{t}\right)} \left(\frac{e^{x}-1}-1\right) \left(\frac{e^{x}-1}-1}-1\right) = e^{\left(\frac{e^{x}-1}-1}-1\right) = e^{\left(\frac{e^{x}-1}-1\right) = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right) = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right) = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right) = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right) = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right) = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac{e^{x}-1}-1\right) = e^{x}} = e^{\left(\frac{e^{x}-1}-1\right) = e^{\left(\frac{e^{x}-1}-1\right)} = e^{\left(\frac$$

3. On a $f'(x) = \frac{g(x)f(x)}{(x-1)^2}$ pour tout $x \in \mathbb{R} \setminus \{0,1\}$, donc f'(x) est du signe de g(x). avec

$$f(-1) = 1$$
, $f\frac{3}{2} = \frac{9}{4}$, $f(2) = 2$, $f(4) = \sqrt[3]{4}$.

$Partie\ C$:

1.
$$\forall x \in \left[\frac{3}{2}, +\infty\right[\text{ on a } |f(x)| \leqslant f\left(\frac{3}{2}\right) = \left(\frac{9}{4}\right).|h(x)| \leqslant f\left(\frac{3}{2}\right) \leqslant 0.3 = \frac{3}{10} \text{ ,donc :}$$
$$|f'(x)| = |f(x)h(x)| \leqslant \frac{27}{40} = k$$

- 2. $x_0 = 2$.
- 3. f est décroissante donc : $f\left(\left[\frac{3}{2},4\right]\right) = \left[f(4),f\left(\frac{3}{2}\right)\right] = \left[\sqrt[3]{4},\frac{9}{4}\right] \subset \left[\frac{3}{2},4\right]$.
- 4. $|u_n 2| = |f(u_{n-1}) f(2)| \le k|u_{n-1} 2| \dots \le k^n|u_0 2| \longrightarrow 0$ d'où $u_n \longrightarrow 2$.

Mini-probléme :

- 1. (a) Du calcul.
 - (b) $\varphi(0)=0$ et $\varphi'(u)=-(u+2)$ e^u , $\lim_{\substack{-\infty\\ r}}\varphi(u)=1$. On a donc $\varphi(u)>0$ pour u<0 et $\varphi(u)<0$ pour u>0. De $f_\alpha'(x)=\frac{f_\alpha(x)}{x}$ $\varphi(\alpha\,\ln x)$, on déduit que :

$$f'_{\alpha}(x) > 0 \Leftrightarrow \alpha \ln x < 0$$

 $f'_{\alpha}(x) < 0 \Leftrightarrow \alpha \ln x > 0$

Si $\alpha > 0$: on prolonge par continuité en 0 en posant $f_{\alpha}(0) = 0$ et

$$\frac{f_{\alpha}(x) - f_{\alpha}(0)}{x - 0} = \frac{f_{\alpha}(x)}{x} = x^{-x^{\alpha}} = e^{-x^{\alpha} \ln x} \xrightarrow[x \to 0]{} 1$$

Si $\alpha < 0$ impossible.

- (c) .
- (d) x = 1.
- 2. si (x,y) = (1,1), tout réel α est solution .
 - si x = 1 et $y \neq 1$, il n'y a pas de solution .
 - si $x \neq 1$, (E) $\iff x^{\alpha} = 1 \frac{\ln y}{\ln x}$.

On trouve alors une solution si et seulement si $1 - \frac{\ln y}{\ln x} > 0$, soit $\frac{\ln(\frac{y}{x})}{\ln x} < 0$, càd

$$(x < 1 \text{ et } y > x)$$
 ou $(x > 1 \text{ et } y < x)$.

3. la tangente au point d'abscisse x passe par $O \Leftrightarrow f'_{\alpha}(x) = \frac{f_{\alpha}(x)}{x} \Leftrightarrow \varphi(\alpha \ln x) = 1 \Leftrightarrow \alpha \ln x = -1 \Leftrightarrow x = e^{-\frac{1}{\alpha}}$. La courbe recherchée a donc pour équation cartésienne

$$y = f_{\alpha} \left(e^{-\frac{1}{\alpha}} \right) = x^{1-\frac{1}{\alpha}} = x^{1+\ln(x)}$$

FIN

©: www.chez.com/myismail

Mamouni My Ismail PCSI 2 Casablanca Maroc