- (1) En prenant x = y = 0, l'équation devient : $(1 f(0)^2)f(0) = 2f(0)$, donc $f(0) = -f(0)^3$, d'où $f(0)(1 + f(0)^2)$, donc enfin f(0) = 0.
- (2) Soit $x \in \mathbb{R}$ et (x_n) tel que $\lim x_n = x$, montrons que $\lim f(x_n) = f(x)$, posons $\varepsilon_n = x_n x$, donc $\lim \varepsilon_n = 0$, or f est continue en 0, donc $\lim f(\varepsilon_n) = f(0) = 0$, d'autre part en prenant y = -x dans l'équation on trouve que f(-x) = -f(x), puisque f(0) = 0, donc $f(x_n) f(x) = f(x_n) + f(-x) = (1 f(x_n)f(-x))f(x_n x) \longrightarrow 0$.
- (3) Posons $l = \lim f$ on fait tendre x et y vers $+\infty$ dans l'quation on obtient alors $(1 l^2)l = 2l$, comme dans 1) on trouve l = 0.
- (4) Prendre y = -x dans l'équation et utiliser 1) f(0) = 0.
- (5) (a) $0 \in A$ car f(0) = 0, d'autre part soit $x, y \in A$, montrons que $x y \in A$, en effet comme f(x) = f(y) = 0 et f(-y) = -f(y) l'équation devient dans ce cas f(x y) = f(x) f(y) = 0, d'où $x y \in A$.
 - (b) En premplaçant dans l'équation x et y par $\frac{x}{2}$, on obtient $2f\left(\frac{x}{2}\right) = \left[1 f\left(\frac{x}{2}\right)^2\right] f(x) = 0.$
- (6) (a) Supposons que $\exists b > 0, b \neq a$ tel que f(b) < 0, d'aprés le TVI, puisque f est continue, il existe c > 0 compris entre a et b tel que f(c) = 0, donc $c \in A = \{0\}$ contrdaiction.
 - (b) De même si $\exists a > 0$ tel que f(a) < 0, alors f(x) < 0, glqx > 0.