بِسمِ اللَّهِ الرَّحْمَٰنِ الرَّحِيمِ وَ عَلَى اللَّهِ فَليَتَوَكَّلِ الْمُتَوَكِّلُون

صَدَقَ اللَّهُ العَظِيمِ

Corrigé DS6 (07-08) : Calcul matriciel

1ère Partie

- $1) \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
 - Si tous les coefficients sont nuls, alors rgA = 0.
 - Sinon, et si les colonnes sont proportionnelles, donc $a = \lambda b, c = \lambda d$, donc ad bc = 0, alors rgA = 1.
 - Si $ad bc \neq 0$, alors rgA = 2.
- 2) a) On sait que $\operatorname{rg} A = \operatorname{rg}(C_1, \dots, C_n) = \dim \operatorname{Vect}(C_1, \dots, C_n)$ où C_1, \dots, C_n désignent les colonnes de A. Si $\operatorname{rg} A = 0$, alors tous les colonnes sont nulles donc les coefficients $a_{i,j}$ sont tous nuls.
 - b) $\operatorname{rg} A = n \iff A$ surjective (en tant qu'application linéaire) $\iff A$ bijective (car endormorphisme en dimension finie) $\iff A$ inversible.
- 3) Notons par $\mathcal{B}=(e_1,\cdots,e_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$, on sait que $(f_A(e_1)=C_1,\cdots,f_A(e_n)=C_n)$ est une famille géneratrice de $\mathrm{Im} f_A$, d'où dim $\mathrm{Im} f_A=\mathrm{dim}\ \mathrm{Vect}(C_1,\cdots,C_n)=\mathrm{rg} A$.
- 4) a) $A = U^t V = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \begin{pmatrix} v_1 & \cdots & v_n \end{pmatrix} = \begin{pmatrix} u_1 v_1 & \cdots & u_1 v_n \\ \vdots & & \vdots \\ u_n v_1 & \cdots & u_n v_n \end{pmatrix}$, donc $a_{i,j} = u_i v_j$
 - **b)** $\mathbf{Tr}A = \sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} u_i v_i.$
 - c) Les colonnes de A sont $C_1 = v_1 U, \dots, C_n = v_n U$.
 - d) les colonnes de A ne sont pas toutes nulles donc, $rgA \ge 1$, d'autre part elles sont toutes proportionnelles à U donc rgA = 1.
- 5) a) $rgA \neq 0$, donc au moins une colonnes $C_{i_0} \neq 0$.
 - b) dim $Vect(C_1, \dots, C_n) = rgA = 1$, donc toutes les colonnes sont proportionnelles.
 - c) Posons $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, on a : $a_{i,j}$ est le i éme coéfficient de $C_j = \lambda_j X$, donc

$$a_{i,j} = \lambda_j x_i$$
, d'où $A = X^t Y$ avec $Y = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$ non nul.

- d) $A = X_0^t Y_0 = X_1^t Y_1 \Longrightarrow X_0^t Y_0 Y_0 = X_1^t Y_1 Y_0 \Longrightarrow \alpha X_0 = \beta X_1$ où $\alpha = Y_0 Y_0$ et $\beta = Y_1 Y_1$ des réels non nuls, donc $X_1 = \lambda X_0$ et $Y_1 = \lambda Y_0$.
- 6) $\operatorname{rg} A = r \Longrightarrow A \text{ est semblable à la matrice } J_r = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & & \\ & & & 0 & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix}, \text{ donc}$

 $\exists P, Q$ inversible telles que $A = PJ_rQ$, or $J_r = \sum_{i=1}^r E_{i,i}$, avec $\operatorname{rg} E_{i,i} = 1$, donc $A = \sum_{i=1}^r PE_{i,i}Q$ avec $\operatorname{rg} PE_{i,i}Q = 1$.

- 7) a) Supposons que $\sum_{i=1}^{p} Y_i^t Z_i = 0$, donc $\sum_{i=1}^{p} Y_i^t Z_i Z_i = 0$, or la famille (Y_1, \cdots, Y_p) est libre et ${}^t Z_i Z_i = \lambda_i \in \mathbb{R}$, donc ${}^t Z_i Z_i = 0$, posons $Z_i = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}$, alors ${}^t Z_i Z_i = \sum_{k=1}^{n} z_k^2 = 0 \implies z_1 = \cdots, z_n = 0 \implies Z_i = 0$. La réciproque est evidente.
 - b) La famille $(X_i^{-t}Y_j)_{1\leq i,j\leq n}$ est de cardinal $n^2=\dim\mathcal{M}_n(\mathbb{R})$ formé par des matrices de rang 1, d'aprés Partie 1, 4,d). Il suffit donc de montrer qu'elle est libre. En effet supposons que $\sum_{i,j=1}^n \lambda_{i,j} X_i^t Y_j = 0$, donc $\sum_{j=1}^n \left(\sum_{i=1}^n \lambda_{i,j} X_i\right)^t Y_j = 0$, d'après la question précédente on en déduit que $\sum_{i=1}^n \lambda_{i,j} X_i = 0$, $\forall j$ or la famille (X_i) est libre donc $\lambda_{i,j} = 0$, $\forall i,j$.

2ème Partie

- 1) $A^2 = U^t V U^t V = U \alpha^t V = \alpha U^t V = \alpha A$.
- 2) A nilpotente si et seulement si $\exists p \in \mathbb{N}^*$ tel que $A^p = 0$, or $A^p = \alpha^{p-1}A$ (récurrence simple), la condition necessaire et suffisante pour A soit nilpotente est donc $\alpha = 0$.
- 3) A n'est pas nilpotente donc $\alpha \neq 0$, d'où $(\lambda A)^2 = \lambda^2 A^2 = \lambda^2 \alpha A$. Pour que λA soit un projecteur il faut et il suffit que $(\lambda A)^2 = \lambda A$, donc $\lambda = \frac{1}{\alpha}$.
- 4) a) $rgA = 1 \neq n$, donc $A = A 0.I_n$ n'est pas inversible, d'où 0 est une valeur propre dont le sous-espace propore est ker A, avec $Y \in ker A \iff$

AY=U $\underbrace{^tVY}_{\text{scalaire}}=(^tVY)U=0 \Longleftrightarrow^t VY=0$. D'après la formule du rang on a $\dim\ker A=n-1$.

- b) AU = U $\underbrace{{}^tVU}_{\text{scalaire}} = ({}^tVU)U = \alpha U$, donc α est une autre valeur propre de A, dont U est un vecteur propre associé. Le sous espace propre associé est $\ker(A \alpha I_n)$ qui forme avec l'autre sous-espace propre à savoir $\ker A$ une somme directe dans $\mathcal{M}_{n,1}(\mathbb{R})$, or $\dim \ker A = n 1$, $\dim \mathcal{M}_{n,1}(\mathbb{R}) = n$, donc $\ker(A \alpha I_n)$ est de dimension 1, engendré par U.
- c) Les seules valeurs propres de A sont $0,\alpha$. Il y'en a deux si $\alpha \neq 0$ et une seule quand $\alpha = 0$.
- 5) Si $\alpha \neq 0$ les sous-espaces propres de A sont supplementaires dans $\mathcal{M}_{n,1}(\mathbb{R})$, donc A est diagonalisable et donc semblable à la matrice $diag(0, \dots, 0, \alpha)$ car $\dim \ker A = n 1$ et $\dim \ker (A \alpha I_n) = 1$.
- 6) a) A n'est pas diagonalisable, car elle est non nulle et admet 0 comme unique valeur propre.
 - b) on a d'aprés Partie II, 4,b) $AU = \alpha U = 0$, donc $U \in \ker f$, donc $W = \lambda U \in \ker f$, qu'on complète par (E_1, \dots, E_{n-2}) pour avoir (E_1, \dots, E_{n-2}, W) base de $\ker f$.
 - c) card \mathcal{B} où $\mathcal{B}=\{E_1,\cdots,E_{n-2},U,V\}=n=\dim\mathcal{M}_{n,1}(\mathbb{R}),$ il suffit donc de montrer qu'elle est libre, en effet supposons que $\lambda_1E_1+\cdots+\lambda_{n-2}E_{n-2}+\lambda_{n-1}W+\lambda_nV=0,$ on multiplie par A à gauche vu $E_1,\cdots,E_{n-2},W\in\ker f=\ker A,$ donc $0=\lambda_nAV=\lambda U$ $\forall VV$, or $W\neq 0,$ donc $\lambda_n=0,$ scalaire non nul d'où $\lambda_1E_1+\cdots+\lambda_{n-2}E_{n-2}+\lambda_{n-1}W=0,$ or la famille (E_1,\cdots,E_{n-2},W) est libre car base de $\ker f,$ donc $\lambda_1=\cdots=\lambda_n=0.$ on a $f(E_1)=\cdots=f(E_{n-1})=f(W)=0$ car (E_1,\cdots,E_{n-2},W) base de $\ker f,$

d'autre part $f(V) = AV = {}^t VVU = W$, donc $\mathcal{M}_{\mathcal{B}}(f) = \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 1 \\ 0 & \cdots & 0 \end{pmatrix} = J$

qui est semblable à $A = \mathcal{M}_{\mathcal{B}_0}(f)$, où \mathcal{B}_0 la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$

d) D'aprés la question précédente toute matrice de rang 1 est de trace nulle est semblable à J, dont toutes ces matrices sont semblables entre elles.

Fin