CPGE My Youssef, Rabat



صَدَقَ اللَّهُ العَظِيم

# Corrigé DS 9: Matrices Déterminants

Lundi 15 Juin 2009 Durée : 4 heures

#### Blague du jour :

Docteur, j'ai des trous de memoire, que dois-je faire?

- Me payer d'avance, madame!

### Mathématicien du jour

Van Der Monde

Alexandre-Théophile Vandermonde (1735-1796), est un mathématicien français. Il fut aussi musicien et chimiste, travaillant notamment avec Étienne Bézout et Antoine Lavoisier. Son nom est maintenant surtout associé à un déterminant.

#### I. Résultats préliminaires

- 1) A est une matrice triangulaire dont les valeurs propres sont ses termes diagonaux, càd 1 et 2, ainsi A qui est une matrice carré d'ordre 2, admet 2 valeurs propres distinctes, donc diagonalisable, et par suite semblable à  $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$
- 2) Soit P,Q inversibles telles que  $B=PAP^{-1}$  et  $C=QBQ^{-1}$ , alors  $C=QPAQ^{-1}P^{-1}=QPA(QP)^{-1}$ , donc A et C sont semblables.
- 3) Trace d'une matrice : Posons  $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$  et  $B = \begin{pmatrix} a' & c' \\ b' & d' \end{pmatrix}$ 
  - $\mathbf{a)} \quad \forall \lambda \in \mathbb{R}, \, \mathbf{on} \, \, \mathbf{a} \, \, A + \lambda B = \begin{pmatrix} a + \lambda a' & c + \lambda c' \\ b + \lambda b' & d + \lambda d' \end{pmatrix}, \, \mathbf{d'où} \, \operatorname{tr}(A + \lambda B) = a + \lambda a' + d + \lambda d' = \operatorname{tr}(A) + \lambda \operatorname{tr}(B).$
  - b)  $AB = \begin{pmatrix} aa' + cb' & ac' + cd' \\ ba' + db' & bc' + dd' \end{pmatrix}$  et  $BA = \begin{pmatrix} a'a + c'b & a'c + c'd \\ b'a + d'b & b'c + d'd \end{pmatrix}$  donc tr(AB) = aa' + cb' + bc' + dd' = tr(BA).
  - c) Soit P,Q inversible telle que  $B=PAP^{-1}$ , donc  $tr(B)=tr(PAP^{-1})=tr(P^{-1}AP)=tr(A)$ .
- 4) Déterminant d'une matrice :
  - a) Posons  $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$  et  $B = \begin{pmatrix} a' & c' \\ b' & d' \end{pmatrix}$ , donc  $AB = \begin{pmatrix} aa' + cb' & ac' + cd' \\ ba' + db' & bc' + dd' \end{pmatrix}$ , d'où  $\det(AB) = \begin{pmatrix} aa' + cb')(bc' + dd') (ac' + cd')(ba' + db') = aa'dd' + cb'bc' ac'db' cd'ba' = (ad bc)(a'd' b'c') = \det(A)\det(B)$ .

- b) Si A inversible, soit  $B = A^{-1}$ , alors  $AB = I_2$ , d'où  $1 = \det(I_2) = \det(AB) = \det(A) \det(B)$ , donc  $\det(A) \neq 0$ .

  Inversement: Si  $\det(A) \neq 0$ , posons  $B = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ , on vérifie facilement que  $AB = BA = I_2$ , donc A est inversible, avec  $A^{-1} = B = \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ .
- 5) Polynôme caractéristique d'une matrice :
  - a)  $\chi_A(x) = \det(A xI_2) = \begin{vmatrix} a x & b \\ c & d x \end{vmatrix} = (a x)(d x) bc = x^2 (a + d)x + ad bc = x^2 tr(A)x + det(A).$
  - b)  $\lambda$  est une valeur propre de A si et seulement si  $A-\lambda I_2$  est non inversible si et seulement si  $\chi_A(\lambda) = \det(A \lambda I_2) = 0$ .
  - c)  $\operatorname{Sp}(A) \neq \emptyset$  si et seulement si l'équation  $x^2 \operatorname{tr}(A)x + \det(A) = 0$  admet au moins une racine réelle si et seulement si  $\Delta = \operatorname{tr}(A)^2 4\det(A) \geq 0$ .
  - d) Soit P inversible telle que  $B=PAP^{-1}$ , donc  $\chi_B(x)=\det(B-xI_2)=\det(PAP^{-1}-xI_2)=\det(P(A-xI_2)P^{-1})=\det(A-xI_2)=\chi_A(x)$ . La réciproque : Posons  $A=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ , on a  $\chi_A(x)=(1-x)^2=\chi_{I_2}(x)$ , mais A n'est pas semblable à  $I_2$  car sinon  $A=PI_2P^{-1}=I_2$ .
  - e)  $A^2 \operatorname{tr}(A)A + \det(A)I_2 = \begin{pmatrix} a^2 + bc & b(b+d) \\ c(a+d) & bc+d^2 \end{pmatrix} \begin{pmatrix} a(a+d) & b(a+d) \\ c(a+d) & d(c+d) \end{pmatrix} \begin{pmatrix} ad bc & 0 \\ 0 & ad bc \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$
- 6) a) Découle de l'unicité des limites des suites  $a_k, b_k, c_k$  et  $d_k$ .
  - b)  $\lim \operatorname{tr}(A_k) = \lim (a_k + d_k) = \lim a_k + \lim d_k = a + d = \operatorname{tr}(A)$ , de même  $\lim \det(A_k) = \lim (a_k d_k b_k c_k) = ad bc = \det(A)$ .

#### II. Réduction des matrices carrées réelles d'ordre 2

- 1) Si  $\operatorname{Sp}(A) = \{\lambda\}$  et A diagonalisable, alors  $\exists P$  inversible telle que  $A = PDP^{-1}$ , où  $D = \lambda I_2$ , donc  $A = \lambda I_2$ . La réciproque est vraie, car  $\lambda I_2$  est diagonalisable puisque diagonale.
- 2) a) Car  $f(e'_1) = \lambda e'_1$ , alors que  $f(e'_2) = \alpha e'_1 + \beta f(e'_2)$ .
  - b) A et  $\begin{pmatrix} \lambda & \alpha \\ 0 & \beta \end{pmatrix}$  sont les matrices d'un même endomorphisme, donc sont semblables et par suit ont même polynôme caractéristique, donc même valeurs propres. Ainsi  $\beta$  qui est une valeur propre de  $\begin{pmatrix} \lambda & \alpha \\ 0 & \beta \end{pmatrix}$  est aussi valeur propre de A, mais  $\mathbf{Sp}(A) = \{\lambda\}$  donc  $\beta = \lambda$ , avec  $\alpha \neq 0$  car sinon A serait semblable  $\begin{pmatrix} \lambda & 0 \\ 0 & \beta \end{pmatrix}$ , donc diagonalisable.
  - c)  $\begin{pmatrix} 1/\alpha & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ , donc  $\begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix}$  est semblable à  $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$  car  $\begin{pmatrix} 1/\alpha & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}^{-1}$ , or A est semblable à  $\begin{pmatrix} \lambda & \alpha \\ 0 & \lambda \end{pmatrix}$  car matrices d'un même endomorphisme dans deux bases diffèrentes. Donc finalement A est semblable à  $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ .
- 3) a) On a  $f(e_1') = \lambda e_1'$  et  $f(e_2') = \mu e_2'$ , donc la matrice de f dans la base  $(e_1', e_2')$  sera de la forme  $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ .
  - b) A est semblable à  $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$  car elles représentent le même endomorphisme dans deux bases diffèrentes.
- 4) a)  $\operatorname{Sp}(A) = \emptyset$ , donc l'équation  $x^2 \operatorname{tr}(A)x + \det(A) = 0$  n'admet aucune racine réelle, donc  $\Delta = \operatorname{tr}(A)^2 4\det(A) < 0$ .

- b)  $A'^2 = \frac{4}{\delta^2} \left( A^2 \operatorname{tr}(A)A + \frac{\operatorname{tr}(A)^2}{4} I_2 \right) = \frac{4}{4 \det(A) \operatorname{tr}(A)^2} \left( \frac{\operatorname{tr}(A)^2}{4} \det A \right) I_2 = -I_2$  (d'aprés I.5.e).
- c)  $\operatorname{card}\{e,g(e)\}=2=\dim\mathbb{R}^2$ , il suffir de montrer que  $\{e,g(e)\}$  est libre. En effet,  $\alpha e+\beta g(e)=0\Longrightarrow \alpha g(e)+\beta g^2(e)=0$ , or  $A'^2=-I_2$ , donc  $g^2=-id_{\mathbb{R}^2}$ , d'où  $-\beta e+\alpha g(e)=0$ , donc  $\alpha(\alpha e+\beta g(e))-\beta(-\beta e+\alpha g(e))=(\alpha^2+\beta^2)e=0$ , or  $e\neq 0$ , donc  $\alpha^2+\beta^2=0$ , d'où  $\alpha=\beta=0$  (CQFD).
- d) Posons  $(e, g(e)) = (e_1, e_2)$ , donc  $g(e_1) = e_2$  et  $g(e_2) = g^2(e) = -e = -e_1$ , donc la matrice de g dans la base  $(e, g(e)) = (e_1, e_2)$  est de la forme  $A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
- e) A' et  $A_1$  représentent le même endomorphisme g dans deux bases différentes, donc sont semblables, i.e :  $\exists P$  inversible telle que  $A_1 = PA'P^{-1}$ . D'autre part on remarque que  $A'' = \frac{1}{2}(\operatorname{tr}(A)I_2 + \delta A_1)$ , donc  $A'' = \frac{1}{2}P\left(\operatorname{tr}(A)I_2 + \delta A'\right)P^{-1} = PAP^{-1}$ , donc A et A'' sont semblables.

## III. Ètude des classes de similitude de $\mathcal{M}_2(\mathbb{R})$ .

#### A. Cas des matrices scalaires.

- 1) A semblable à  $\lambda I_2 \iff \exists P$  inversible telle que  $A = P(\lambda I_2)P = \lambda I_2$ , donc la classe de similitude d'une matrice scalaire  $\lambda I_2$  est réduite au singleton  $\{\lambda I_2\}$ .
- 2) a)  $\det E_{\lambda} = \det F_{\lambda} = 1$ , donc  $E_{\lambda}$  et  $F_{\lambda}$  sont inversibles d'inverses  $E_{\lambda}^{-1} = \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix}$  et  $F_{\lambda}^{-1} = \begin{pmatrix} 1 & 0 \\ -\lambda & 1 \end{pmatrix}$

$$b) \quad E_{\lambda}AE_{\lambda}^{-1} = \begin{pmatrix} 1 & \lambda \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a+\lambda c & b+\lambda d \\ c & d \end{pmatrix} \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a+\lambda c & b+\lambda (d-a)+\lambda^2 c \\ c & -c\lambda+d \end{pmatrix}$$

$$F_{\lambda}AF_{\lambda}^{-1} = \begin{pmatrix} 1 & 0 \\ \lambda & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\lambda & 1 \end{pmatrix} = \begin{pmatrix} a & b \\ \lambda a+c & \lambda b+d \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\lambda & 1 \end{pmatrix} = \begin{pmatrix} a-\lambda b & b \\ \lambda^2 a+\lambda (a-d)+c & -c\lambda+d \end{pmatrix}$$

3) On a en particulier,  $E_{\lambda}AE_{\lambda}^{-1}=A$  et  $F_{\lambda}AF_{\lambda}^{-1}=A$ , donc par identification des coéfficients, on obtient  $a+\lambda c=a,\ \forall \lambda,\ {\bf donc}\ c=0,\ {\bf mais}\ {\bf aussi}\ \lambda(d-a)+b=b,\ \forall \lambda,\ {\bf donc}\ a=d,\ {\bf et}\ {\bf enfin}$   $a-b\lambda=a,\forall \lambda,\ {\bf donc}\ b=0,\ {\bf i.e}: A=\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}=aI_2,\ {\bf matrice}\ {\bf scalaire}.$ 

# B. Pour qu'une classe de similitude soit fermée

- 1) Si A matrice scalaire, alors sa classe de similitude est  $\mathcal{S}(A) = \{A\}$ , donc toute suite  $(A_k)$  d'éléments de  $\mathcal{S}(A)$  est constante  $A_k = A$ , et donc converge vers  $A \in \mathcal{S}(A)$ .
- 2) a)  $A_k$  est semblable à  $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ , qui est, à son tour, semblable à A, d'après II.2.c, donc  $A_k$  et A sont semblables.

b) 
$$A_k = \begin{pmatrix} 2^{-k} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} 2^k & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda 2^{-k} & 2^{-k} \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} 2^k & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \lambda & 2^{-k} \\ 0 & \lambda \end{pmatrix}$$
 qui converge vers  $B = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} = \lambda I_2$ .

- c) A et B ne peuvent pas être semblables car B diagonale et A non diagonalisable, donc  $B \notin \mathcal{S}(A)$ , or  $B = \lim A_k$  et  $A_k \in \mathcal{S}(A)$ , donc  $\mathcal{S}(A)$  n'est pas fermée.
- 3) a)  $P_kAp_k^{-1}=\begin{pmatrix} a_k & b_k \\ c_k & d_k \end{pmatrix}$  converge vers  $C=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ , donc  $\lim a_k=a, \lim b_k=b, \lim c_k=c$  et  $\lim d_k=d$ , d'autre part  $P_k(A-xI_2)P_k^{-1}=P_kAp_k^{-1}-xI_2=\begin{pmatrix} a_k-x & b_k \\ c_k & d_k-x \end{pmatrix}$  converge vers  $\begin{pmatrix} a-x & b \\ c & d-x \end{pmatrix}=C-xI_2$ .
  - b) D'après I.6.b, on a :  $\det(C xI_2) = \lim \det(P_k(A xI_2)P_k^{-1}) = \lim \det(A xI_2) = 0$  car  $x \in \{\lambda, \mu\} = \mathbf{Sp}(A)$ .

- c) D'après la question précèdente, on peut conclure que  $\operatorname{Sp}(C) = \{\lambda, \mu\}$ , donc (d'après II.3.b) C est semblable à  $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ , d'après encore II.3.b, on a aussi A est semblable à  $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ , d'où A et C sont semblables, i.e :  $C \in \mathcal{S}(A)$ .
- d) On vient de démontrer que si  $Sp(A) = \{\lambda, \mu\}$ , alors pour toute suite  $A_k = P_k(A xI_2)P_k^{-1}$  qui converge vers C, on a  $C \in \mathcal{S}(A)$ , donc  $\mathcal{S}(A)$  est fermée.
- 4) a) D'après I.6.b, on a  $\operatorname{tr}(\tilde{A}) = \lim \operatorname{tr}(P_k A P_k^{-1}) = \lim \operatorname{tr}(A) = \operatorname{tr}(A)$ . De la même question on montre aussi que  $\det(\tilde{A}) = \det(A)$ .
  - b) D'après la question II.4.d, et comme  $tr(A) = tr(\tilde{A})$  et  $det(A) = det(\tilde{A})$ , on en déduit que les deux matrices A et  $\tilde{A}$  sont semblables à la matrice A'', donc A et  $\tilde{A}$  sont semblables.
  - c) On a montré que pour toute suite de matrices  $P_kAP_k^{-1} \in \mathcal{S}(A)$  qui converge vers une matrice  $\tilde{A}$ , on a  $\tilde{A} \in \mathcal{S}(A)$ , donc  $\mathcal{S}(A)$  est fermée.
- 5) Les cas possibles pour une matrice  $A \in \mathcal{M}_2(\mathbb{R})$ , sont les suivantes :
  - $-\mathbf{Sp}(A) = \emptyset$ , dans ce cas  $\mathcal{S}(A)$  est fermée, d'après III.B.4.c.
  - Sp $(A) = \{\lambda\}$  diagonalisable, dans ce cas  $A = \lambda I_2$  (d'après III.1), et donc  $\mathcal{S}(A)$  est fermée d'après III.B.1.
  - $-\mathbf{Sp}(A) = \{\lambda\}$  non diagonalisable, dans ce cas  $\mathcal{S}(A)$  n'est pas fermée d'après III.B.2.c.
  - Sp $(A) = \{\lambda\}$  diagonalisable, dans ce cas  $A = \lambda I_2$  (d'après II.1), et donc  $\mathcal{S}(A)$  est fermée d'après III.B.1.
  - Sp $(A) = \{\lambda, \mu\}$  dans ce cas A est diagonalisable (d'après II.3.b) et  $\mathcal{S}(A)$  fermée d'après III.B.3.d.

Conclusion : S(A) est fermée si et seulement si  $Sp(A) = \emptyset$  ou A diagonalisable.

Fin à la prochaine