DL 2: Nombres et suites réelles

A rendre le: Lundi 01 Novembre 2004

Problème 1:

 $Rappel: \text{Un sous groupe de }(\mathbb{R},+) \text{ est une partie } H \text{ de } \mathbb{R} \text{ verifiant } : 0 \in H \text{ et } \forall (x,y) \in H^2 \text{ on a } : x-y \in H.$

On se propose dans ce problème de chercher la forme génèrale des sous groupes de $(\mathbb{R}, +)$. Dans tout le problème H désigne un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$ et $a = \inf(H \cap \mathbb{R}^{+*})$.

- 1. Montrer que : $H \cap \mathbb{R}^{-*} \neq \emptyset \iff H \cap \mathbb{R}^{+*} \neq \emptyset$.
- 2. En deduire que a existe.
- 3. On suppose dans cette question que : $a \neq 0$, et on veut montrer que $H = a\mathbb{Z}$.
 - (a) On suppose que : $a \notin H$.
 - i. Soit $\varepsilon > 0$, montrer que : $\exists (x,y) \in H^2$ tel que : $x \neq y$ et vérifiant : $(a < x < a + \varepsilon \text{ et } a < y < a + \varepsilon)$.
 - ii. En choisissant ε convenable tirer une contradiction.
 - (b) En deduire que : $a\mathbb{Z} \subset H$.
 - (c) Enoncez le théorème de la division euclidienne sur \mathbb{R} .
 - (d) Soit $x \in H$, utiliser la question précèdente pour montrer que : $\exists q \in Z$ tel que : x = aq, conclure que : H = aZ.
- 4. On suppose dans cette question que : a = 0 et on veut démontrer que : H est dense dans \mathbb{R} .
 - (a) Rappeler la definition d'une partie dense dans \mathbb{R} .
 - (b) Soit $(x, y) \in \mathbb{R}^2$ tels que : x < y, montrer que : $\exists b \in H$ tel que : 0 < b < y x.
 - (c) En deduire que : $x < E\left(\frac{y}{b}\right) b < y$. Conclure.
- 5. Applications:
 - (a) Montrer que : $\mathbb{Z}(\sqrt{2}) = \{a + b\pi \text{ tel que} : (a, b) \in \mathbb{N} \times \mathbb{Z}\}$ est une sous groupe de $(\mathbb{R}, +)$, puis en déduire qu'il est dense dans \mathbb{R} .
 - (b) Montrer que les suites $(\cos(n))_{n\in\mathbb{N}}$ et $(\sin(n))_{n\in\mathbb{N}}$ sont denses dans [-1,1]. En déduire que ces suites ne peuvent pas converger.

Problème 2:

on appelle suite recurrente lineaire toute suite (a_n) definie a l'aide d'une relation de type : $\begin{cases} u_0 = \alpha, u_1 = \beta \\ u_{n+1} = au_n + bu_{n-1}, \forall n \in \mathbb{N}^* \end{cases}$ où a,b,α,β des reéls donnés et fixés dans tout le problème.

On se propose de trouver la fomre générale de telles suites.

On considére l'équation caractéristique : $x^2 - ax - b = 0$ (*), $\Delta = \sqrt{a^2 + 4b}$ son déscriminant.

- 1. On suppose $\Delta>0$ et soient r_1,r_2 les solutions réelles de (*), λ,μ vérifiant le système : $\begin{cases} \lambda + \mu = \alpha \\ \lambda r_1 + \mu r_2 = \beta \end{cases}$ (a) Montrer que $\forall n \in \mathbb{N} : u_n = \lambda r_1^n + \mu r_2^n$.
- - (a) Montrer que : $\forall n \in \mathbb{N} : u_n = \lambda r^n + \mu n r^n$.
- (b) Trouver l'expression de la suite $\begin{cases} u_0 = 0, u_1 = 1 \\ u_{n+1} = 4u_n 4u_{n-1}, \forall n \in \mathbb{N}^* \end{cases}$ 3. On suppose $\Delta < 0$ et soient $re^{i\theta}$ une solution complexe de (*). λ, μ vérifiant le système :
- - (a) Montrer que : $\forall n \in \mathbb{N}$: $u_n = r^n \cos(n\theta) + r^n \sin(n\theta)$. (b) Trouver l'expression de la suite : $\begin{cases} u_0 = 0, u_1 = -1 \\ 4u_{n+1} = -2u_n u_{n-1}, \forall n \in \mathbb{N}^* \end{cases}$ (c) Résoudre le système suivant d'inconnues, x_1, x_2, \dots, x_n : $\begin{cases} -2\cos(\theta)x_1 + x_2 = 0 \\ x_1 2\cos(\theta)x_2 + x_3 = 0 \end{cases}$ \vdots $x_{n-2} 2\cos(\theta)x_{n-1} + x_n = 0$ $x_{n-1} 2\cos(\theta)x_n = 0$

où θ un réel fixe.

FIN

© 2000-2004 http://www.chez.com/myismail Mamouni My Ismail

CPGE Med V-Casablanca