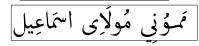


My Ismail Mamouni

http://myismail.net



Préparation aux Concours (Notes de Cours)

Familles Totales

1 Définition et exemples

Définition: Suite totale

On dit que la suite $(e_n)_{n\in\mathbb{N}}$ est **totale** dans l'espace préhilbertien réel $(E,(\cdot|\cdot))$ lorsque $\mathrm{Vect}(e_n)_{n\in\mathbb{N}}$ est dense dans E, c'est-à-dire $\overline{\mathrm{Vect}(e_n)_{n\in\mathbb{N}}}=E$.

Autrement dit, lorsque, pour tout $x \in E$, pour tout $\varepsilon > 0$, il existe $\alpha_0, \dots, \alpha_d$ dans \mathbb{R} tels que

$$\left\| x - \sum_{k=0}^{d} \alpha_k e_k \right\| \leqslant \varepsilon$$

où || · || est la norme euclidienne associée à (·|·).

Exemple: fondamental

On considère deux réels a et b tels que a < b.

On note w est une fonction continue strictement positive intégrable sur [a,b]. Munissons $\mathscr{C}([a,b],\mathbf{R})$ du produit scalaire

$$(f|g) = \int_{a}^{b} w(t)f(t)g(t) dt$$

Alors la famille $(t \mapsto t^n)_{n \in \mathbb{N}}$ est totale. Plus généralement, toute famille $(e_n)_{n \in \mathbb{N}}$ de fonctions polynômes vérifiant, pour tout n, $\deg(e_n) = n$, est totale.

En effet, la clé est ici le théorème de Weierstrass. On commence par comparer la norme $\|.\|$ associée au produit scalaire et la norme N_{∞} de la convergence uniforme : notant $E = \mathcal{C}([a,b],\mathbf{R})$,

$$\forall f \in E \qquad \|f\| \leqslant kN_{\infty}$$

avec $k = \sqrt{\int_a^b w}$. Il y a par théorème de Weierstrass une suite (P_n) d'éléments de $\text{Vect}((e_n)_{n \in \mathbb{N}})$ qui converge vers f pour N_{∞} . A fortiori il y a convergence pour $\|.\|$.

2 Caractérisation par les projections orthogonales

Propriété

Soit $(e_n)_{n\in\mathbb{N}}$ une suite d'éléments de l'espace préhilbertien réel $(E,(\cdot|\cdot))$.

Pour tout n, p_n désigne la projection orthogonale sur $Vect(e_0,...,e_n)$.

Alors, $(e_n)_{n\in\mathbb{N}}$ est totale si et seulement si pour tout $x\in E$, la suite $(p_n(x))_{n\in\mathbb{N}}$ converge vers x.

Démonstration

Le sens réciproque est immédiat, par définition d'une suite totale.

Si $(e_n)_{n \in \mathbb{N}}$ est totale, $x \in E$, $\varepsilon > 0$.

On a $y \in \text{Vect}(e_n)_{n \in \mathbb{N}}$ tel que $||y - x|| \le \varepsilon$.

Soit d tel que $y \in Vect(e_0, ..., e_d)$.

 $\text{Si } n \geqslant d, \ y \in \text{Vect}(e_0, \dots, e_n) \text{ et } \mathrm{d}(x, \text{Vect}(e_0, \dots, e_n)) = \left\| x - p_n(x) \right\| \leqslant \left\| x - y \right\| \leqslant \varepsilon, \text{ ce qui permet de conclure}.$

3 Complément

Exercice : Égalité de Bessel-Parseval

Si $(e_n)_{n\in\mathbb{N}}$ est orthonormale dans l'espace préhilbertien réel $(E,\langle.\rangle)$, alors,

$$\forall x \in E$$

$$\sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 \le ||x||^2$$

et $(e_n)_{n \in \mathbb{N}}$ est totale si et seulement si

$$\forall x \in E \qquad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2$$

L'inégalité a été vue (inégalité de Bessel). L'équivalence vient de la simple remarque suivante (voir chapitre sur la projection orthogonale sur un sev de dimension finie) :

$$\|x - p_n(x)\|^2 = \|x\|^2 - \|p_n(x)\|^2 = \|x\|^2 - \sum_{k=0}^{n} (e_k|x)^2$$

et de la proposition précédente.

Exercice

Si $(e_n)_{n \in \mathbb{N}}$ est totale, si $F = \text{Vect}(e_n)_{n \in \mathbb{N}}$, alors $F^{\perp} = \{0_E\}$

Il suffit de dire que, si $x \in F^{\perp}$, alors $p_n(x) = 0_E$ pour tout x. Or la suite $(p_n(x))$ converge vers $x \dots$