

MP* 1 (Rabat) **Groupe 2**

My Ismail Mamouni

http://myismail.net

مَسُوني مُولَاِي اسمَاعِيل

Séries numériques

Partie II: Les Classiques

Personnalité du jour

Riemann

Georg Friedrich Bernhard Riemann (1826-1866) est un mathématicien allemand. Influent sur le plan théorique, il a apporté une contribution importante à l'analyse et à la géométrie différentielle. On lui doit entre autres les notion de Surface de Riemann, Sphère de Riemann, , Intégrale de Riemann, Hypothèse de Riemann, Somme de Riemann, Théorème de représentation de Riemann, Fonction zêta de Riemann, Théorème de réarrangement de Riemann,...

Séries numériques 1

Exercice 1 Étudier la nature de la série de terme général. Calculer sa somme (dans le cas possible)

1)
$$u_n = \ln(1 + \frac{2}{n(n+3)})$$

2)
$$u_n = \frac{(-1)^n}{n + (-1)^n \sqrt{n}}$$

3)
$$u_n = \frac{(-1)^n}{(\ln n)^\alpha + (-1)^n}$$
, où α un nombre réel,

4)
$$u_n = \frac{1}{(\ln(n))^{\ln(n)}}$$

4)
$$u_n = \frac{1}{(\ln(n))^{\ln(n)}}$$

5) $u_n = \frac{\sqrt{n} \ln(n)}{n^2 + 1} \sin(n\theta)$ où $\theta \in \mathbb{R}$ est fixe.
6) $u_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$ où $\alpha > 1$.
11) $u_n = \ln(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+a}})$, où a réel positif.
12) $u_n = \left(1 - \frac{1}{n}\right)^{-n} - \left(1 + \frac{1}{n}\right)^n$

6)
$$u_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}} où \alpha > 1.$$

7)
$$u_n = \sin(\sqrt{n^2 + a^2}\pi)$$
 avec a un réel positif donné.

8)
$$u_n = \int_0^{\frac{1}{n}} \frac{\sqrt{x}}{(1+x^2)^{\frac{1}{3}}} dx$$

1)
$$u_{n} = \ln(1 + \frac{2}{n(n+3)})$$

2) $u_{n} = \frac{(-1)^{n}}{n + (-1)^{n}\sqrt{n}}.$
3) $u_{n} = \frac{(-1)^{n}}{(\ln n)^{\alpha} + (-1)^{n}}$, où α un nombre $r\acute{e}el$,

1

8) $u_{n} = \frac{1}{n} \frac{\sqrt{x}}{(1+x^{2})^{\frac{1}{3}}} dx.$

9) $u_{n} = \frac{(-1)^{n}}{n^{\alpha} + (-1)^{n}n^{\beta}}.$ où α, β deux nombres $r\acute{e}els$ tels que $\alpha \neq \beta$.

10) $u_{n} = \frac{(-1)^{n}}{\sin(n) + \sqrt{n}}.$

10)
$$u_n = \frac{(-1)^n}{\sin(n) + \sqrt{n}}$$
.

11)
$$u_n = \ln(\frac{\sqrt{n} + (-1)^n}{\sqrt{n+a}})$$
, où a réel positif.

12)
$$u_n = \left(1 - \frac{1}{n}\right)^{-n} - \left(1 + \frac{1}{n}\right)^n$$

13)
$$u_n = e^{-\sqrt{n}}$$

14)
$$u_n = \frac{(-1)^{n-1}}{n^{\alpha} + (-1)^n}$$

Exercice 2 Calcul de sommes

Calculer les sommes des séries suivantes :

1)
$$\sum_{k=2}^{\infty} \frac{1}{k^2 - 1}$$
.

Réponse: $\frac{3}{4}$.

2)
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)(k+2)}$$
.

 $R\'eponse: \frac{1}{4}.$

3)
$$\sum_{k=1}^{\infty} \frac{1}{k(k+1)\dots(k+p)}$$
.

Réponse: $S_{n} - (n+1)S_{n+1} = 0$

 $\begin{array}{lll} \textit{R\'eponse:} & S_p \ - \ (p \ + \ 1)S_{p+1} & = \ S_p \ - \\ \hline \frac{1}{(p+1)!} \Longrightarrow S_p = \frac{1}{pp!}. \end{array}$

4)
$$\sum_{k=0}^{\infty} \frac{1}{k^3 + 8k^2 + 17k + 10}.$$

Réponse: $\frac{23}{144}$.

5)
$$\sum_{k=1}^{\infty} \ln\left(1 + \frac{2}{k(k+3)}\right)$$
.

 $R\'eponse: \ln 3$.

$$6) \quad \sum_{k=2}^{\infty} \ln\left(1 - \frac{1}{k^2}\right).$$

 $R\'{e}ponse: -\ln 2.$

7)
$$\sum_{k=0}^{\infty} \ln\left(\cos\frac{\alpha}{2^k}\right).$$

Réponse: $\ln\left(\frac{\sin 2\alpha}{2\alpha}\right)$

8)
$$\sum_{k=0}^{\infty} 2^{-k} \tan(2^{-k}\alpha)$$
.

Réponse: $\frac{1}{\alpha} - 2 \cot(2\alpha)$.

9)
$$\sum_{k=0}^{\infty} \frac{2k^3 - 3k^2 + 1}{(k+3)!}.$$

 $R\'{e}ponse: 109 - 40e.$

$$10) \quad \sum_{n=p}^{\infty} C_n^p x^n.$$

Réponse: $\frac{x^p}{(1-x)^{p+1}}$ pour |x| < 1 par récurrence.

11)
$$\sum_{k=1}^{\infty} \frac{x^k}{(1-x^k)(1-x^{k+1})}.$$

Réponse: $\frac{x}{(1-x)^2}$ si |x| < 1, $\frac{1}{(1-x)^2}$ si |x| > 1.

12)
$$\sum_{k=1}^{\infty} \frac{k - n[k/n]}{k(k+1)}$$
.

 $R\'{e}ponse: S_n = \sum_{q=0}^{\infty} \sum_{r=1}^{n-1} \frac{r}{(qn+r)(qn+r+1)} =$

$$\sum_{q=0}^{\infty} \sum_{r=1}^{n-1} \frac{r}{qn+r} - \frac{r}{qn+r+1}.$$

$$S_n = \sum_{q=0}^{\infty} \left(\frac{1}{qn+1} + \frac{1}{qn+2} + \dots + \frac{1}{qn+r} - \frac{1}{q+1} \right) =$$

$$\lim_{N \to \infty} \left(\sum_{k=1}^{(N+1)n} \frac{1}{k} - \sum_{k=1}^{N+1} \frac{1}{k} \right) = \ln n.$$

Exercice 3 On considère les deux suites a et b définies par $a_0,b_0\in\mathbb{R}$ et $\forall n\geqslant 0$:

$$\begin{cases} a_{n+1} = \frac{1}{2}(a_n + b_n) \\ b_{n+1} = \sqrt{a_n b_n} \end{cases}$$

- 1) Montrer que a converge vers une limite l que l'on explicitera
- 2) On pose $u_n = a_n b_n$.
 - a) Majorer u_{n+1} en fonction de u_n . En déduire la vitesse de convergence de u.
 - b) Nature de la série $\sum_{n} (a_n l)$

Exercice 4 Montrer que $\sum_{n=0}^{+\infty} (-1)^n \int_0^{\frac{\pi}{2}} \cos^n x dx$ existe et donner sa valeur. Que dire de

$$\sum_{n=0}^{+\infty} \int_0^{\frac{\pi}{2}} \cos^n x dx ?$$

Exercice 5 On pose
$$u_n = \frac{n!e^n}{n^n\sqrt{n}}$$
 et $v_n = \ln(\frac{u_{n+1}}{u_n})$.

- 1) Montrer que $\sum_{n\geq 2} v_n$ converge.
- 2) En déduire l'existence d'une constante C > 0 tel que $n! \underset{n \to +\infty}{\sim} C(\frac{n}{e})^n \sqrt{n}$.
- 3) A l'aide des intégrales de Wallis , Déterminer C.

Exercice 6 On pose
$$R_k = \sum_{n>k+1} \frac{(-1)^n}{n}$$

- 1) Justifier l'existence de R_k .
- 2) Étudier la convergence absolue de la série $\sum_{k>1} R_k$.
- 3) Quel est le signe de R_k ? Étudier la convergence de la série $\sum_{k>1} R_k$.

Exercice 7 Soient a,b,c trois nombres entiers positifs et z un nombre complexe de module strictement inférieur 1. Montrer que $\sum_{n=0}^{+\infty} \frac{z^{cn}}{1-z^{an+b}} = \sum_{n=0}^{+\infty} \frac{z^{bn}}{1-z^{an+c}}$.

Exercice 8 Pour $s \in \mathbb{R}$, posons $\zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}$ et $\zeta_a(s) = \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^s}$. Soient $2 = p_1 < p_2 < ... < p_n < ...$ la suite des nombres premiers.

- 1) Exprimer $\zeta_a(s)$ en fonction de $\zeta(s)$ pour s > 1.
- 2) Donner un développement asymptotique deux termes de $\zeta(s)$ lorsque $s \to 1^+$.
- 3) Montrer que $\forall s > 1$, $\zeta(s) = \prod_{n=1}^{+\infty} (1 p_n^{-s})^{-1}$.
- 4) Pour s>1, la série $\sum_{n\geq 1}p_n^{-s}$ est-elle convergente? La série $\sum_{n\geq 1}p_n^{-1}$ est-elle convergente?

Exercice 9.

- 1) Montrer qu'il existe un rel A tel que $\sum_{k=1}^{n} \frac{\ln(k)}{k} = \frac{1}{2} \ln^2(n) + A + o(1)$.
- 2) En déduire qu'il existe un rel C tel que $\prod_{k=1}^n k^{\frac{1}{k}} \sim Cn^{\frac{\ln(n)}{2}}$

Exercice 10 Calculer
$$\sum_{n=1}^{+\infty} \frac{1}{(n-1)!(n+1)}$$

Exercice 11 .

- 1) Montrer que $\sum_{k=0}^{+\infty} \frac{(-1)^k}{2k+1} = \frac{\pi}{4}$ (on pourra calculer $\int_0^1 t^{2k} dt$)
- 2) Nature de la série $\sum_{n\geq 1} \ln(\tan(\sum_{k=0}^{n} \frac{(-1)^k}{2k+1}))$

Exercice 12 Soit $\alpha > 0$, on pose $R_n = \sum_{p=n}^{+\infty} \frac{(-1)^{p-1}}{p^{\alpha}}$.

Étudier la nature de la série $\sum_{n\geqslant 1} R_n$ lorsque $\alpha\geqslant 1$ puis lorsque $0<\alpha<1$.

Exercice 13 On considère la suite x définie par $x_{n+1} = 2x_n + \sqrt{x_n}$ avec $x_0 > 0$.

- 1) Déterminer la limite de x.
- 2) Étudier la nature de la série $\sum_{n\geqslant 0} \frac{1}{\sqrt{x_n}}$.
- 3) Déterminer un équivalent de x_n lorsque $n \to +\infty$ (on pourra introduire $v_n = \ln x_n$)

Exercice 14 Soient deux entiers p, q > 0. On pose $u_n = \frac{p(p+1)\cdots(p+n-1)}{q(q+1)\cdots(q+n-1)}$.

- 1) Montrer que : $\sum u_n$ converge $\Leftrightarrow p+1 < q$
- 2) Montrer que dans ce cas $\sum_{n=1}^{+\infty} u_n = \frac{q-1}{q-p-1}$

Exercice 15 Soit un rel $\beta > 0$. On considère la série de terme général $u_n = \frac{(-1)^n}{n+\beta}$. On note S_n les sommes partielles de cette dernière.

- 1) Montrer que $S_n = \int_0^1 \frac{t^{\beta-1}}{1+t} dt + (-1)^n \int_0^1 \frac{t^{n+\beta}}{1+t} dt$
- 2) Montrer que la série $\sum u_n$ converge et que sa somme est $\int_0^1 \frac{t^{\beta-1}}{1+t} dt$
- 3) Traiter les cas où $\beta = 1, 1/2, 1/3$. Donner la valeur de $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n}$

Exercice 16 Soit s > 1. Exprimer après avoir justifié son existence, la somme $\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^s}$ en

fonction de $\sum_{n=1}^{+\infty} \frac{1}{n^s}$

Exercice 17 On considère la fonction f définie $\sup]0, +\infty[$ par $: f(x) = \frac{\sin x}{x}.$

- 1) Montrer que pour $n \in \mathbb{N}^*$ la fonction f atteint un et un seul extremum local sur $[n\pi, (n+1)\pi[$ en un point qu'on notera a_n . On pose en outre $m_n = f(a_n)$.
- 2) Montrer que $a_n = n\pi + \frac{\pi}{2} \theta_n$ où θ_n tend vers θ en décroissant.
- 3) Monter que la série $\sum m_n$ converge.

Exercice 18 Soit un rel a>1, d(n) désignera le nombre de chiffres dans l'écriture décimale de l'entier n. étudier la série $\sum a^{d(n)}$

Exercice 19 Convergence et calcul de $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n} E(\log_2(n))$

Exercice 20 Soit s>1. Montrer que la fonction $f:x\longmapsto \frac{sE(x)}{x^{s+1}}$ est intégrable sur $[1,+\infty[$ et

$$que: \int_1^{+\infty} f(t)dt = \sum_{n=1}^{+\infty} \frac{1}{n^s}$$

Exercice 21 On pose $A_n = 1 + \sqrt{2} + \cdots + \sqrt{n}$

- 1) Montrer en utilisant la croissance de la racine carre que : $A_n = \frac{2}{3}n^{3/2} + O(\sqrt{n})$.
- 2) Utiliser la concavité de la racine carre pour montrer que :

$$\sqrt{n} \le \int_{n-1/2}^{n+1/2} \sqrt{t} \ dt \quad et \quad \sqrt{n} + \sqrt{n+1} \leqslant 2 \int_{n}^{n+1} \sqrt{t} \ dt$$

3) En déduire que $A_n = \frac{2}{3}n^{3/2} + \frac{1}{2}\sqrt{n} + O(1)$

Exercice 22 Soient $\sum u_n$ une série de nombres complexes dont la suite des sommes partielles $(S_n)_n$ est borne et $(a_n)_n$ une suite réelle décroissante et convergeant vers 0.

 $En\ utilisant\ la\ relation,\ dite\ transformation\ d'Abel:$

$$\sum_{k=m}^{n} a_k u_k = a_{n+1} S_n - a_m S_{m-1} - \sum_{k=m}^{n} (a_{k+1} - a_k) S_k$$

montrer que la série $\sum_{n=0}^{\infty} a_n u_n$ est convergente.

Application: Étudier la convergence de la série $\sum \frac{e^{ian}}{n^{\alpha}}$ o $a, \alpha \in \mathbb{R}$.

Exercice 23 Règle de Raabe-Duhamel

Soit une suite réelle (a_n) termes strictement positifs. On suppose que $\frac{a_{n+1}}{a_n} = 1 - \frac{s}{n} + o(\frac{1}{n})$

- 1) En considérant la suite $b_n = \ln\left(\frac{(n+1)^s u_{n+1}}{n^s u_n}\right)$, montrer qu'il existe k > 0 tel que $u_n \sim \frac{k}{n^s}$
- 2) En déduire une condition nécessaire et suffisante pour la convergence de $\sum u_n$

Exemple : étudier la série de terme général $u_n = \frac{\binom{n}{2n}}{2^{2n}}$

Exercice 24 Soit $A \in \mathcal{M}_p(\mathbb{C})$.

- 1) Montrer que pour toute matrice inversible $P \in \mathcal{M}_p(\mathbb{C})$, $e^{PAP^{-1}} = Pe^AP^{-1}$
- 2) Montrer que $\det(e^A) = e^{tr(A)}$
- 3) Justifier que ce dernier résultat reste valable dans le cas où A est une matrice réelle.

Exercice 25 Soit $A \in \mathcal{M}_p(\mathbb{C})$.

1) On suppose que A est diagonalisable de valeurs propres $\lambda_1, \lambda_2, \cdots, \lambda_p$. Soit P un polynôme vérifiant : $\forall i \in [\![1,p]\!], \ P(\lambda_i) = e^{\lambda_i}$.

Justifier l'existence d'un tel polynôme.

Montrer que $e^A = P(A)$.

2) A tant quelconque, montrer qu'il existe un polynôme P tel que $e^A = P(A)$.

Exercice 26 Soit E l'espace vectoriel C([0,1],R) muni de la norme de la convergence uniforme

$$\|.\|_{\infty}$$
. Pour tout $f \in E$ on pose $T(f) = \sum_{n=1}^{\infty} \frac{(-1)^n}{2^n} f(1/n)$

- 1) Montrer que T définit une forme linaire continue de E. Calculer sa norme et montrer qu'elle n'est pas atteinte.
- 2) On considère l'hyperplan affine H de E d'équation : T(f)=1. Montrer que d(0,H) n'est pas atteinte dans H.

Exercice 27 $\mathcal{M}_p(\mathbb{K})$ est muni d'une norme d'algèbre $\|.\|$.

- 1) Soit $A \in \mathcal{M}_p(\mathbb{K})$ telle que ||A|| < 1, montrer que la série $\sum_{n=1}^{\infty} (-1)^n A^n$ converge et donner sa somme.
- 2) Montrer que $GL_p(\mathbb{K})$ est dense dans $\mathcal{M}_p(\mathbb{K})$

Exercice 28 Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle telle que la série $\sum u_n$ soit convergente mais non absolument convergente. On veut montrer que pour tout rel x il existe une suite (ε_n) valeurs dans

$$\{-1,1\}$$
 telle que $\sum_{n=0}^{+\infty} \varepsilon_n u_n = x$

1) a) On pose $v_n = |u_n|$, Construire une suite (α_n) valeurs dans $\{-1,1\}$ telle que :

$$\forall n \in \mathbb{N}, |S_{n+1}| \leqslant \max(|S_n|, v_{n+1}) \quad \text{où } S_n = \sum_{k=0}^{+\infty} \alpha_k v_k$$

- b) Montrer que $\sum_{n=0}^{+\infty} \alpha_n v_n = 0$
- 2) Conclure

Exercice 29

Calculer les sommes de séries suivantes après en avoir prouvé la convergence :

1)
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$$
;

2)
$$\sum_{n=1}^{+\infty} \frac{1}{n(2n+1)}$$
;

3)
$$\sum u_n$$
 où $\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}$, et $0 < a < b$; il faut déterminer a et b pour que la série converge;

4)
$$\sum_{n=1}^{+\infty} \frac{\sqrt{(n-1)!}}{(1+\sqrt{1})(1+\sqrt{2})\dots(1+\sqrt{n})}.$$

Exercice 30

Soit $(a_n)_n$ une suite de réels strictement positifs telle que $\lim_{n \to +\infty} a_n^n = a > 0$.

Étudier la série $\sum_{n} \frac{1-a_n}{n}$.

Exercice 31

On se donne $p \in \mathbb{R}_+^*$. Nature de la série du terme général :

$$u_n = n^{\alpha} \sum_{k=2}^{n} \frac{\ln k}{\ln(k+p)}$$

Exercice 32

Nature des séries de termes général :

1)
$$I_n = \int_n^{+\infty} \frac{e^{n-x}}{n+x} \mathrm{d}x.$$

2)
$$J_n = (-1)^n \int_0^1 \cos(nt^2) dt$$

Exercice 33

Soit f de classe C^1 sur l'intervalle $[0, a], (a \ge 1)$. On suppose que f n'est pas identiquement nulle au voisinage de a.

Ètudier la convergence de $\sum u_n$, $o: u_n = \int_0^a t^n f(t) dt$.

Exercice 34

Montrer que, pour tout $n \in \mathbb{N}^*$, il existe un unique $x_n \in \mathbb{R}_+^*$ tel que $\frac{e^{x_n}-1}{x_n} = \frac{n+1}{n}$. Déterminer $\lim_{n \to +\infty} x_n$, et la nature de la série $\sum x_n$.

Exercice 35

Pour $\alpha \in \mathbb{R}_+^*$, on note $r_n = \sum_{n=1}^{+\infty} \frac{(-1)^k}{k^{\alpha}}$. Étude de la série $\sum r_n$.

Exercice 36

On pose $A_n = \sum_{k=0}^n \frac{1}{k!}$ et $B_n = \sum_{k=0}^n \frac{(-1)^k}{k!}$. Nature de la série $A_n B_n - 1$.

Exercice 37

On définit la suite (u_n) de réels par u_0 et $u_{n+1} = \frac{1}{2}(u_n + u_n^2)$.

- 1) Pour quelles valeurs de u_0 la série de terme général u_n converge-t-elle?
- 2) Montrer que, dans ce cas, si la suite $(2^n u_n)$ n'est pas la suite nulle, elle converge vers une limite $l \neq 0$. Trouver alors un développement asymptotique deux termes de u_n .

Exercice 38

Soit f une application continue de [0,a] dans lui même admettant un développement limité $f(x) = x - \lambda x^{\alpha} + o(x^{\alpha})$ droite de 0, avec $\lambda > 0$ et alpha > 1.

Pour simplifier, nous supposerons que, pour tout x > 0, 0 < f(x) < x (ce qui est de toute manière vraie localement droite de 0).

On considère la suite définie par : $u_0 > 0$ et $\forall n \ge 0, u_{n+1} = f(u_n)$.

- 1) Montrer que (u_n) tend vers 0 lorsque $n \to +\infty$. Donner un équivalent de u_n lorsque n tend vers $+\infty$. On pourra chercher un réel β tel que la suite de terme général $v_n = u_{n+1}^{\beta} - u_n^{\beta}$ ait une limite non nulle.
- 2) Pour quelles valeurs de λ, α et γ la série $\sum n^{\gamma}u_n$ converge-elle?
- 3) Application numérique : nature de la série $\sum u_n$ où $u_0 \in]0, \frac{\pi}{0}[$, et $u_{n+1} = \sin(u_n)$

Exercice 39

Soit une série terme général u_n positif, divergente, de somme partielle S_n , avec $u_0 > 0$. Étudier, pour $\alpha > 0$, la nature de la série $\sum \frac{u_n}{S^{\alpha}}$.

Exercice 40 Cauchy-Schwarz. Soient (u_n) , (v_n) deux suites réelles telles que $\sum u_n^2$ et $\sum v_n^2$ convergent.

- 1) Montrer que $\sum u_n v_n$ converge.
- 2) Montrer que $\sum (u_n + v_n)^2$ converge et : $\sqrt{\sum (u_n + v_n)^2} \le \sqrt{\sum u_n^2} + \sqrt{\sum v_n^2}$