

Feuille d'exercices N° 2: Structure de groupe Le Groupe Orthogonal

Définition 1: Soient E un espace euclidien et f un endomorphisme de E.

On dit que f est une isométrie vectorielle de E si f préserve la norme :

$$\forall x \in E, \|f(x)\| = \|x\|$$

<u>Théorème</u> I: Soient E un espace euclidien et f un endomorphisme de E. Montrer que

f est une isométrie de E si, et seulement si, f conserve le produit scalaire.

Théorème 2: Soient E un espace euclidien et s une isométrie de E.

Montrer que s est un automorphisme de E appelé automorphisme orthogonal de E.

Théorème 3 : Soient $E \neq \{0_E\}$ un espace euclidien et $f \in \mathcal{L}(E)$ et B une base orthonormée de E. Montrer que

f isométrie vectorielle de $E \Leftrightarrow f(B)$ est une base orthonormée de E

Théorème 3 1: Soit E un espace euclidien. Montrer que

L'ensemble des isométries vectorielles de E, noté $\mathrm{O}(E)$, est un sous-groupe du groupe linéaire $\mathrm{GL}(E)$ de E appelé groupe orthogonal de E.

Définition 3 : Soit $A \in \mathcal{M}_n(R)$

A est une matrice orthogonale si A est inversible d'inverse ${}^t\!A$

Théorème 4 : Soient E un espace euclidien, $f \in \mathcal{L}(E)$ et B une base orthonor-

mée de *E*.

Montrer que f isométrie vectorielle \Leftrightarrow Mat_B(f) orthogonale

Théorème S: Soit B et B' deux bases orthonormées d'un espace euclidien E. Montrer que

La matrice de passage $P_B^{B'}$ de B à B' est une matrice orthogonale.

Théorème 6: L'ensemble des matrices orthogonales de taille n, notée $\mathrm{O}(n)$ Montrer que c'est est un sous-groupe du groupe linéaire $\mathrm{GL}_n(\mathbb{R})$ appelé le groupe orthogonal de degré n.

Théorème6 : Soit $A \in \mathcal{M}_n(\mathbb{R})$ orthogonale et $f \in GL(E)$ isométrie.

- On a alors $\det(A) = \pm 1$. Montrer que A est positive si $\det(A) = 1$ et négative si $\det(A) = -1$
- On a alors $\det(f) = \pm 1$. f est un isométrie positive si $\det(f) = 1$ et négative si $\det(f) = -1$

Exemple: Une réflexion est une isométrie négative.

Rappel: On appelle réflexion, toute symétrie orthogonale par rapport à un hyperplan

Définition S: Soit E un espace euclidien de dimension n. Montrer que

- L'ensemble des automorphisme orthogonaux positifs de E, noté SO(E), est un sous groupe de O(E) appelé le groupe spécial orthogonal de E.
- L'ensemble des matrices orthogonales positives de taille n, noté SO(n), est un sous-groupe de O(n), appelé le groupe spécial orthogonal de degré n.

Théorème 7: Dans O(2) le groupe orthogonale de degré 2. Montrer que

- Les matrices positives sont de la forme $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, $\theta \in \mathbb{R}$
- Les matrices négatives sont de la forme $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$, $\theta \in \mathbb{R}$

Théorème 8 : Soit E un espace euclidien orienté de dimension 2 et $f \in O(2)$ Montrer que

- Si f est positive alors f est la rotation vectorielle r_{θ} d'angle de mesure θ Dans une base orthonormée directe, $\mathrm{Mat}(r_{\theta}) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$, $\theta \in \mathbb{R}$.
- Si f est négative alors f est la réflexion vectorielle s_{Δ} par rapport à la droite Δ . Dans une base orthonormée directe, $\operatorname{Mat}(s_{\Delta}) = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$, $\theta \in \mathbb{R}$.

Théorème9: Montrer que

Pour tous vecteurs unitaires u et v, il existe une et une seule rotation r pour laquelle v = r(u) que l'on appelle angle orienté (u, v).

Tout réel θ pour lequel $\operatorname{Mat}(r) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ est appelé mesure de l'angle orienté $(u,v) = \theta$ $[2\pi]$