

http://myismail.net

Feuille d'exercice N°3

Structure de groupe

Exercice 1: Mines 2017

On note $S_n(\mathbb{R})$ le sous-espace vectoriel de $M_n(\mathbb{R})$ formé des matrices symétriques. Une matrice $S \in S_n(\mathbb{R})$ est dite définie positive si et seulement si pour tout $X \in M_{n,1}(\mathbb{R})$ non nul, on a $X^TSX > 0$. On note $S_n^{++}(\mathbb{R})$ l'ensemble des matrices symétriques définies positives.

- 1. Montrer qu'une matrice symétrique $S \in S_n(\mathbb{R})$ est définie positive si et seulement si son spectre est contenu dans \mathbb{R}^{*+} .
- 2. En déduire que pour tout $S \in S_n^{++}(\mathbb{R})$, il existe $R \in GL_n(\mathbb{R})$ tel que $S = R^T R$. Réciproquement montrer que pour tout $R \in GL_n(\mathbb{R})$, $R^T R \in S_n^{++}(\mathbb{R})$.
- 3. Montrer que l'ensemble $S_n^{++}(\mathbb{R})$ est convexe.

Exercice 1: Mines 2019

Soit n un entier ≥ 1 . L'espace vectoriel \mathbb{R}^n est muni de sa structure euclidienne canonique. La norme euclidienne associée est notée $\| \|$. On note $\mathcal{M}_n(\mathbb{R})$ l'ensemble des matrices carrées d'ordre n à coefficients réels, et on identifiera \mathbb{R}^n à l'ensemble $\mathcal{M}_{n,1}(\mathbb{R})$ des matrices colonnes à coefficients réels. On note ${}^tX = (x_0 \ x_1 \cdots x_{n-1}) \in \mathcal{M}_{1,n}(\mathbb{R})$ la matrice ligne transposée de la matrice colonne

$$X = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{R}).$$

Enfin, on note \widetilde{X} la fonction polynomiale définie sur \mathbb{R} par la formule

$$\widetilde{X}(t) = \sum_{k=0}^{n-1} x_k t^k.$$

L'objet du problème est l'étude de quelques propriétés de la matrice de Hilbert $H_n = \left(h_{j,k}^{(n)}\right)_{0 \leq j,k \leq n-1} \in \mathcal{M}_{n,n}(\mathbb{R})$ définie par

$$H_n = \begin{pmatrix} 1 & \frac{1}{2} & \dots & \frac{1}{n} \\ \frac{1}{2} & \frac{1}{3} & \dots & \frac{1}{n+1} \\ \vdots & & \ddots & \vdots \\ \frac{1}{n} & \frac{1}{n+1} & \dots & \frac{1}{2n-1} \end{pmatrix}.$$

On a donc $h_{j,k}^{(n)} = \frac{1}{j+k+1}$ pour tous $j, k \in \{0, 1, ..., n-1\}$.

A. Une propriété de Perron-Frobenius

1) Montrer que la matrice H_n est symétrique réelle et définie positive. On pourra s'aider du calcul de l'intégrale $\int_0^1 (\widetilde{X}(t))^2 dt$.

On note V le sous-espace propre de H_n associé à la plus grande valeur propre ρ_n de H_n .

2) Montrer que $X \in \mathcal{V}$ si et seulement si ${}^tX H_n X = \rho_n ||X||^2$.

Soit
$$X_0 = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$$
 un vecteur non nul de \mathcal{V} . On note $|X_0| = \begin{pmatrix} |x_0| \\ |x_1| \\ \vdots \\ |x_{n-1}| \end{pmatrix}$.

- 3) Établir l'inégalité ${}^tX_0 H_n X_0 \le {}^t|X_0|H_n|X_0|$ et en déduire que $|X_0| \in \mathcal{V}$.
- 4) Montrer que $H_n|X_0|$, puis que X_0 , n'a aucune coordonnée nulle.
- **5)** En déduire la dimension du sous-espace propre V.

B. Inégalité de Hilbert

Soit
$$X = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \\ x_{n-1} \end{pmatrix}$$
 un vecteur de \mathbb{R}^n et P un polynôme à coefficients réels.

- **6)** En s'aidant du calcul de l'intégrale $\int_0^{\pi} P(e^{i\theta})e^{i\theta} d\theta$, montrer l'inégalité $\left| \int_{-1}^1 P(t) dt \right| \le \int_0^{\pi} \left| P(e^{i\theta}) \right| d\theta$, puis l'inégalité ${}^t X H_n X \le \int_0^{\pi} \left| \widetilde{X}(e^{i\theta}) \right|^2 d\theta$.
- 7) En déduire que ${}^t X H_n X \leq \pi ||X||^2$.
- **8)** Montrer que la suite $(\rho_n)_{n\geq 1}$ est croissante et convergente.

Exercice 3: Oral Mines 2023

- 1) Soit M une matrices antisymétrique réelle. Soit λ une valeur propre réelle de M. Montrer que $\lambda=0$.
- 2) Soit $C: A \mapsto (A+I_n)^{-1}(A-I_n)$. Montrer que C est bien définie sur l'ensemble des matrices antisymétriques et à valeurs dans $O_n(\mathbf{R})$.

Exercice 4: Oral Mines 2022

Soit G un groupe fini tel que $\forall x \in G, g^2 = e$.

Question 1. Montrer que $m{G}$ est abélien et qu'il est de cardinal une puissance de 2.

Indications. S'intéresser à xy avec $x, y \in G$. S'intéresser au plus grand sous-groupe de G de cardinal une puissance de 2 en le supposant plus petit que G.

Exercice 5: Oral Mines 2022

Soit p un nombre premier. On pose: $G_p=\{z\in\mathbb{C}^*,\exists k\in\mathbb{N},z^{p^k}=1\}$.

- 1) Montrer que G_p est un sous-groupe de $(\mathbb{C}^*, imes)$
- **2)** Soit H un sous-groupe de $G_p,\ H
 eq G_p,\ H
 eq \{1\}$.

Montrer que \boldsymbol{H} est cyclique.