

P RESEAU
IBNGHAZI
MP* 1 (Rabat)
Groupe 2

Devoir Maison N° 2 (EVN)

X 2000

Ce problème a pour objet l'étude de certains cônes dans des espaces euclidiens.

On désigne par E l'espace euclidien $\mathbf{R}^n (n \ge 1)$, par (.|.) son produit scalaire usuel, et par $\|.\|$ la norme associée. Pour toute partie X de E, on note X^{\perp} (resp. X^+) l'ensemble des éléments xde E satisfaisant (x|y) = 0 (resp. $(x|y) \ge 0$) pour tout y de X.

Une partie C de E sera appelée *cône* à *faces* s'il existe une famille finie d'éléments c_1, \ldots, c_r (r > 0) de E telle que C soit l'ensemble des combinaisons linéaires $\sum_{i=1}^r \lambda_i c_i$ avec $\lambda_1, \ldots, \lambda_r \ge 0$. On supposera toujours les c_i non nuls, et on dira qu'ils *engendrent* C. Enfin on appelle *face* de C toute partie de C de la forme $C \cap \{w\}^{\perp}$ avec $w \in C^+$.

La première partie est indépendante des suivantes.

Première partie

1. Vérifier que tout sous-espace vectoriel non nul de E est un cône à faces.

2. Supposant n = r = 2, décrire (sans démonstration mais avec des figures) les ensembles C, C^+ et donner sous chaque figure la liste des faces de C suivant les diverses positions relatives de c_1 et c_2 .

3. Supposant que n = r = 3 et que (c_1, c_2, c_3) est une base orthogonale de E, décrire sans démonstration C, C^+ et les faces de C.

Deuxième partie

On se propose, dans cette partie, de démontrer que tout cône à faces est fermé dans E.

4.a) Soit K une partie compacte de E ne contenant pas 0. Montrer que l'ensemble des éléments de la forme λx , où $\lambda \in \mathbf{R}_+$ et $x \in K$, est fermé dans E.

b) Ce résultat subsiste-t-il si l'on suppose K seulement fermé, ou si K, compact, contient 0?

5. On considère maintenant un cône à faces C engendré par des éléments c_1, \ldots, c_r .

a) Montrer que *C* est fermé lorsqu'il ne contient aucune droite vectorielle. [On pourra introduire l'ensemble *K* des éléments $\sum_{i=1}^{r} \lambda_i c_i$ avec $\lambda_i \in \mathbf{R}_+$ et $\sum_{i=1}^{r} \lambda_i = 1$.]

b) Soit V un sous-espace vectoriel de E (éventuellement réduit à 0) contenu dans C et distinct de C. On note P le projecteur orthogonal de E sur V^{\perp} . Vérifier que P(C) est un cône à faces contenu dans C.

c) Supposant que P(C) contient une droite vectorielle, construire un sous-espace vectoriel de E contenu dans C et contenant strictement V.

d) Montrer que C est fermé dans E.

Troisième partie

6. On se propose ici de démontrer que tout cône à faces C vérifie $(C^+)^+ = C$.

a) Soit a un élément de E. Montrer que la fonction réelle définie sur C par $c \mapsto ||c - a||$ atteint sa borne inférieure en un point unique de C. On le notera p(a).

b) Déterminer le signe de (p(a) - a|c) lorsque $c \in C$, ainsi que la valeur de (p(a) - a|p(a)).

c) Conclure.

Quatrième partie

On souhaite maintenant démontrer que tout cône à faces est l'intersection d'une famille finie de demi-espaces fermés (on appelle *demi-espace fermé* tout sous-ensemble de E de la forme $\{a\}^+$ avec $a \in E$, $a \neq 0$). 7. Démontrer l'équivalence des conditions suivantes relatives à un cône à faces C:

(α) le sous-espace vectoriel de *E* engendré par *C* est égal à *E*;

 (β) l'intérieur de C est non vide.

8. On suppose dans cette question les conditions de la question 7. satisfaites pour un cône à faces C.

a) Démontrer l'équivalence des conditions suivantes relatives à un élément $x \, de C$:

(α ') x est un point frontière de C;

 (β') x appartient à une face de C distincte de C.

b) Que subsisterait-il de ce résultat si l'on ne supposait pas satisfaites les conditions de la question 7.?

c) Soit x un point de E n'appartenant pas à C. Construire une face F de C, distincte de C et ayant la propriété suivante : pour tout $w \in C^+$ tel que $F = C \cap \{w\}^{\perp}$, on a (x|w) < 0.

[On pourra considérer le segment de droite joignant x à un point x_0 de l'intérieur de C].

9.a) Montrer que l'ensemble des faces d'un cône à faces est fini.

b) Montrer que tout cône à faces est l'intersection d'une famille finie de demi-espaces fermés.

10. Déduire de ce qui précède que, si C est un cône à faces, il en est de même de C^+ .

* *

Corrigé

Partie I

- 1. Soit F un sous-espace vectoriel non nul de E, et (u_1, \ldots, u_p) une base de F. F est l'ensemble des combinaisons linéaires à coefficients positifs ou nuls des vecteurs $(u_1, \ldots, u_p u_1, \ldots, -u_p)$, donc F est un cône à faces.
- 2. Distinguous quatre cas, selon la position respective de c_1 et c_2 :

Dans les cas 2 et 4, les faces de C sont le vecteur nul et les deux demi-droites \mathbb{R}^+c_1 et \mathbb{R}^+c_2 . Dans les cas 1 et 3, les seules faces de C sont C lui-même, et bien sûr le vecteur nul.

3. $\left(\frac{c_1}{||c_1||}, \frac{c_2}{||c_2||}, \frac{c_3}{||c_3||}\right)$ est une base orthonormée de E. C est alors le quadrant formé des vecteurs $xc_1 + yc_2 + zc_3$ avec $x \ge 0, y \ge 0$ et $z \ge 0$. $C^+ = C$.

Les faces de C sont les quarts de plan $(x \ge 0, y \ge 0, z = 0)$, $(x \ge 0, y = 0, z \ge 0)$, $(x = 0, y \ge 0, z \ge 0)$, ainsi que les demi-droites \mathbb{R}^+c_1 , \mathbb{R}^+c_2 , \mathbb{R}^+c_3 et le vecteur nul.

Partie II

4. (a) Soit $(\lambda_n x_n)_{n \in \mathbb{N}}$ une suite convergente vers y, $(x_n)_{n \in \mathbb{N}}$ étant une suite dans K et $(\lambda_n)_{n \in \mathbb{N}}$ une suite dans \mathbb{R}^+ . On veut montrer que y appartient à $L = \{\lambda x \mid \lambda \in \mathbb{R}^+, x \in K\}$.

Par compacité de K, on peut extraire de $(x_n)_n$ une suite $(x_{\phi(n)})_n$ qui converge vers $x \in K$. 0 n'appartenant pas à K, $x \neq 0$, donc il existe n_1 tel que $\forall n \ge n_1$, $||x_{\phi(n)}|| \ge \frac{||x||}{2}$.

 $(\lambda_{\phi(n)}x_{\phi(n)})_n$ converge vers y, donc il existe n_2 tel que $\forall n \ge n_2$, $\|\lambda_{\phi(n)}x_{\phi(n)}\| \le 1 + \|y\|$.

Ainsi, $\forall n \geq \max(n_1, n_2)$, $|\lambda_{\phi(n)}| \leq 2 \frac{1 + ||y||}{||x||}$. $(\lambda_{\phi(n)})_n$ est donc une suite bornée, on peut donc en extraire une sous-suite convergente $(\lambda_{(\phi \circ \psi)(n)})_n$ de limite λ .

Dés lors, $(x_{(\phi \circ \psi)(n)})_n$ converge vers x par extraction, et $(\lambda_{(\phi \circ \psi)(n)} x_{(\phi \circ \psi)(n)})_n$ converge vers λx . Par unicité de limite, il en résulte que $y = \lambda x$.

Toute suite convergente d'éléments de L a sa limite dans L, donc L est fermé.

- (b) Deux contre-exemples :
 - Soit $K = \{(x, y) \in \mathbb{R}^2 / x \ge 0 \text{ et } xy = 1\}$. K est fermé (comme graphe de la fonction $x \mapsto \frac{1}{x} \text{ sur } \mathbb{R}^{*+}$) non borné. On vérifie aisément que $L = \{0\} \cup \{(x, y) \in \mathbb{R}^2 / x > 0 \text{ et } y > 0\}$. Donc $\overline{L} = \{(x, y) \in \mathbb{R}^2 / x \ge 0 \text{ et } y \ge 0\}$ est distinct de L, donc L n'est pas fermé.
 - Soit $K = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ et } x^2 + (y-1)^2 = 1\}$ le demicercle de centre (0, 1) de rayon 1 du demi-plan $x \ge 0$. K est compact (intersection d'un cercle, compact, et d'un demi-plan fermé). On vérifie de même aisément que $L = \{0\} \cup \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ et } y > 0\}.$ Donc $\overline{L} = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ et } y > 0\}$ est distinct de L. donc

Donc $\overline{L} = \{(x, y) \in \mathbb{R}^2 / x \ge 0 \text{ et } y \ge 0\}$ est distinct de L, donc L n'est pas fermé.

5. (a) - Soit donc
$$K = \left\{ \sum_{i=1}^{r} \lambda_i c_i / \forall i, \lambda_i \in \mathbb{R}^+ \text{ et } \sum_{i=1}^{r} \lambda_i = 1 \right\}.$$

Soit aussi $T = \left\{ (\lambda_1, \dots, \lambda_r) \in \mathbb{R}^r / \forall i, \lambda_i \in \mathbb{R}^+ \text{ et } \sum_{i=1}^{r} \lambda_i = 1 \right\}.$ T est fermé borné dans \mathbb{R}^r , donc est compact.

Soit encore ϕ : $T \longrightarrow E_r$, ϕ est continue comme restriction à T d'une application $(\lambda_1, \dots, \lambda_r) \longmapsto \sum_{i=1}^r \lambda_i c_i$

linéaire. Ainsi $K = \phi(T)$ est compact dans E.

- On suppose que C ne contient aucune droite vectorielle.

Si 0 appartenait à K, on pourrait écrire $0 = \sum_{i=1}^{r} \lambda_i c_i$, avec les $\lambda_i \ge 0$ et $\sum_{i=1}^{n} \lambda_i = 1$. Alors par exemple λ_1 serait non nul, ce qui permettrait d'écrire $-c_1 = \frac{\sum_{i=2}^{r} \lambda_i c_i}{\lambda_1}$, et C contiendrait la droite vectorielle $\mathbb{R}c_1$, ce qui est impossible. Finalement, K est un compact ne contenant pas 0, donc $\{\lambda x \mid \lambda \ge 0 \text{ et } x \in K\}$ est fermé d'après ??.

Or tout élément de *C* s'écrit sous la forme $\sum_{i=1}^{r} \lambda_i c_i$, soit λx , avec $\lambda = \sum_{i=1}^{r} \lambda_i$ et $x = \sum_{i=1}^{r} \frac{\lambda_i}{\lambda} c_i$ (lorsque

les λ_i sont non tous nuls, sinon on prend x quelconque dans C), de sorte que $\sum_{i=1}^{r} \frac{\lambda_i}{\lambda} = 1$, et donc $x \in K$.

Ainsi $C = \{\lambda x \mid \lambda \ge 0 \text{ et } x \in K\}$, et C est donc fermé.

- (b) On remarque qu'un cône à faces C vérifie clairement les deux propriétés suivantes : $C + C \subset C$, et $\forall \lambda \geq 0, \ \lambda C \subset C$.
 - On pose $c'_i = P(c_i)$ pour $1 \le i \le r$. On enlève les éléments c'_i qui sont nuls, et quitte à renuméroter, on peut supposer que $c'_i \ne 0$ pour $1 \le i \le q$, et $c'_i = 0$ pour $q + 1 \le i \le r$.

On constate alors que $P(C) = \left\{ \sum_{i=1}^{r} \lambda_i c'_i / \forall i, \lambda_i \in \mathbb{R}^+ \right\}$ par double inclusion immédiate, ce qui prouve que P(C) est le cône à faces engendré par (c'_1, \ldots, c'_a) .

- Soit $x \in C$. On peut écrire x = P(x) + y avec $y \in V$ (décomposition dans $V^{\perp} \oplus V$), d'où P(x) = x + (-y). Or $-y \in V$ donc $-y \in C$, d'où $P(x) \in C + C$ d'où $P(x) \in C$. Ainsi $P(C) \subset C$.

(c) Soit Rx une droite incluse dans P (C). x est un vecteur non nul de P (C), donc il existe y ∈ C tel que P (y) = x. y ∉ V car x ≠ 0. Posons alors W = V + Ry, W est un sous-espace vectoriel de E contenant strictement V (car y ∉ V)

$$y \in C$$
 donc $\{\lambda y \mid \lambda \geq 0\} \subset C$. $-x \in P(C)$, donc il existe $y' \in C$ tel que $P(y') = -x$.
On écrit $y = x + z$, $y' = -x + z'$ avec z et z' éléments de V .

On en déduit -y = y' - z' - z. or $-z' - z \in V \subset C$, et $y' \in C$ donc $-y \in C$, d'où $\{\lambda y \mid \lambda \leq 0\} \subset C$.

Finalement $\mathbb{R}y \subset C$ et $W \subset C$.

- (d) Si C ne contient aucune droite vectorielle, C est fermé d'après ??.
 - Dans le cas contraire, soit V un sous-espace vectoriel de E (non réduit à $\{0\}$), de dimension maximale parmi les sous-espaces inclus dans C. Soit p le projecteur orthogonal sur V^{\perp} . D'après ?? et la maximalité de V, P(C) ne contient aucune droite vectorielle et, d'après ??, est un cône à faces; en appliquant ??, on en déduit que P(C) est fermé dans E. On montre à présent que $C = P^{-1}(P(C))$.
 - l'inclusion $C \subset P^{-1}(P(C))$ est évidente (elle est vraie pour tout ensemble et toute application);
 - soit $x \in P^{-1}(P(C))$: il existe $y \in C$ tel que P(x) = P(y), donc $\exists y \in C, \exists z \in V, x = y + z$; or $V \subset C$, donc $z \in C$, d'où $x \in C$.

Finalement, p est linéaire, donc continue, et P(C) est fermé, donc $P^{-1}(P(C))$ est fermé, donc C est fermé dans E.

Partie III

6. (a) Soit $\phi : C \longrightarrow \mathbb{R}$; ϕ est continue (car 1-lipschitzienne), et à valeurs positives, donc elle admet $c \longmapsto ||c-a||$ une borne inférieure.

- existence du minimum

Choisissons $b \in C$. Si $c \notin B'(a, ||b - a||)$, alors $\phi(c) = ||c - a|| > \phi(b)$.

Ainsi, $\inf_{C} \phi = \inf_{C \cap B'(a, ||b-a||)} \phi$. Or $C \cap B'(a, ||b-a||)$ est fermé borné donc compact, et ϕ est continue,

sa borne inférieure sur cet ensemble est donc atteinte. Il existe finalement $x \in C$ tel que $\phi(x) = \inf_{C} \phi$.

- unicité du minimum Supposons que $\inf_{C} \phi = \phi(c_1) = \phi(c_2).$

C étant convexe (c'est l'enveloppe convexe des demi-droites \mathbb{R}^+c_i), $\frac{c_1+c_2}{2} \in C$.

 $2 ||c_1 - a||^2 + 2 ||c_2 - a||^2 = ||c_2 - c_1||^2 + 4 \left\| \frac{c_1 + c_2}{2} - a \right\|^2.$ L'inégalité $\phi\left(\frac{c_1+c_2}{2}\right) \ge \phi(c_1)$ se traduit alors par $4\phi(c_1)^2 \ge ||c_2-c_1||^2 + 4\phi(c_1)^2$, soit $||c_2 - c_1||^2 < 0$, et finalement $c_1 = c_2$.

- (b) Démontrons d'abord le résultat suivant : $\forall x \in C$, $(P(a) a|x P(a)) \ge 0$ (E). Soit $\lambda \in]0, 1]$; $\lambda x + (1 \lambda) P(a) \in C$, donc $||\lambda x + (1 \lambda) P(a) a|| \ge ||P(a) a||$, d'où $||\lambda (x - P(a)) + P(a) - a||^2 \ge ||P(a) - a||^2.$ Développons : $\lambda^{2} ||x - P(a)|| + 2\lambda (x - P(a) |P(a) - a) \geq 0$. Simplifiant alors par λ , et faisant tendre λ vers 0⁺, on obtient le résultat annoncé.
 - Soit $c \in C$, alors $c + P(a) \in C$, donc en reportant dans (E) : (P(a) a|c) > 0; en particulier pour c = P(a) : (P(a) - a | P(a)) > 0.De même, $0 \in C$, donc en reportant dans (E) : (P(a) - a| - P(a)) > 0. Finalement, (P(a) - a | P(a)) = 0.
- (c) Soit $x \in C$. Par définition de C^+ , pour tout $y \in C^+$, $(x|y) \ge 0$, ce qui par définition de $(C^+)^+$ signifie précisément que $x \in (C^+)^+$. Ainsi $C \subset (C^+)^+$.
 - $\begin{aligned} &-\text{Soit } a \in (C^+)^+ : \text{alors } \forall y \in C^+, \ (a|y) \ge 0, \text{ or } P(a) \in C, \text{ donc } \forall y \in C^+, \ (P(a)|y) \ge 0. \\ &\text{D'après } ??, \ \forall c \in C, \ (P(a) a|c) \ge 0, \text{ donc } P(a) a \in C^+, \text{ d'où } (P(a) a|a) \ge 0. \\ &\text{Or } ||P(a) a||^2 = \underbrace{(P(a) a|P(a))}_{=0} (P(a) a|a) = -(P(a) a|a), \text{ d'où } (P(a) a|a) \le 0. \end{aligned}$ Finalement (P(a) - a|a) = 0, soit $||P(a) - a||^2 = 0$, i.e. P(a) = a, ce qui signifie que $a \in C$.

Donc $(C^+)^+ \subset C$.

Partie IV

7. – $\alpha \Rightarrow \beta$

On suppose VectC = E. Il existe une base (v_1, \ldots, v_n) de E constituée d'éléments de C. Soit N la «norme sup» associée à cette base.

$$v_1, \ldots, v_n$$
 appartenant à C , $\left\{\sum_i \lambda_i v_i / \forall i, \lambda_i \ge 0\right\} \subset C$.
Soit $v = \sum_{k=1}^n x_k v_k \in E$ tel que $N\left(v - \sum_i v_i\right) < 1$; alors $\forall k, |x_k - 1| < 1$, donc $\forall k, x_k \ge 0$, donc $v \in C$.

Finalement C contient la boule de centre $\sum_{i=1}^{N} v_i$ de rayon 1 pour la norme N. Les normes étant équivalentes

dans \mathbb{R}^n , le vecteur $\sum_{i=1}^n v_i$ est intérieur à C.

$$-\beta \Rightarrow \alpha$$

Soit x intérieur à C. $\exists r > 0$, $B(x, r) \subset C$. Soit (e_1, \ldots, e_n) la base canonique de E. $P(t) = \det(x + te_1, x + te_2, \dots, x + te_n)$ est un polynôme en t, de terme de plus haut degré t^n . Il possède donc un nombre fini de racines, d'où l'existence de $t_0 \in]0, r[$ tel que $P(t_0) \neq 0$. $(x + te_1, x + te_2, \dots, x + te_n)$ est donc une base de *E* constituée d'éléments de *C*.

8. (a)
$$-\beta' \Rightarrow \alpha$$

x appartient à la face $C \cap \{w\}^{\perp}$, où $w \in C^+$. $w \neq 0$ car cette face est distincte de C.

(x|w) = 0, donc $\forall \lambda < 0$, $(x + \lambda w|w) = \lambda ||w||^2 < 0$. Par conséquent, $x + \lambda w \notin C$ pour tout $\lambda < 0$, donc x n'appartient pas à l'intérieur de C.

x est donc un point frontière de C.

$$- \alpha' \Rightarrow \beta'$$

Soit $x \in FrC$. Soit S la sphère unité de E. $S \cap C^+$ est fermé borné donc compact (en effet, C^+ $() \{x \in E / (x|y) \ge 0\} \text{ est une intersection de fermés, donc est fermé).}$ $y \in C$

L'application continue $w \mapsto (x|w)$ atteint donc sa borne inférieure sur $S \cap C^+$ en un point w_0 . So it $\alpha = (x|w_0)$. $\alpha \ge 0$ car $w_0 \in C^+$. Supposents $\alpha > 0$.

Soit y un élément quelconque de E tel que $||y - x|| \le \frac{\alpha}{2}$

Alors $(x|w) - (y|w) \le |(x-y|w)| \le \frac{1}{(\operatorname{Cauchy-Schwarz})} ||x-y|| \cdot ||w|| \le \frac{\alpha}{2} ||w||.$ Donc $\forall w \in C^+ \cap S$, $(y|w) \ge (x|w) - \frac{\alpha}{2} \ge \frac{\alpha}{2}$. Par homogénéité, $\forall w \in C^+$, $(y|w) \ge \frac{\alpha}{2} ||w|| \ge 0$, ce qui prouve que $y \in (C^+)^+$.

D'après la ??, $y \in C$ donc C contient la boule de centre x de rayon $\frac{\alpha}{2}$, ce qui est absurde puisque x est un point frontière de C.

Finalement, $\alpha = 0$ d'où l'existence de $w_0 \in C$ non nul tel que $(x|w_0) = 0$. x appartient donc à la face $C \cap \{w_0\}^{\perp}$, qui est distincte de C car d'après les conditions de la question ??, C n'est pas inclus dans le sous-espace strict $\{w_0\}^{\perp}$.

(b) On suppose maintenant que F = VectC est un sous-espace vectoriel strict de E. On note C_F le cône à

faces C considéré comme une partie de F, de sorte que $C_F^+ = \{x \in F \mid \forall y \in C, (x|y) \ge 0\}$. Si $w \in C^+$, on l'écrit $w = w_1 + w_2$ avec $w_1 \in F$ et $w_2 \in F^{\perp}$. $\forall x \in C$, $(x|w) = (x|w_1)$ d'où $w_1 \in C_F^+$, d'où $C^+ \subset C_F^+ + F^{\perp}$, et réciproquement, d'où $C^+ = C_F^+ + F^{\perp}$. Une face de C s'écrit $C \cap \{w\}^{\perp} = C \cap (F \cap \{w\}^{\perp}) = C \cap \{w_1\}^{\perp}$. Par conséquent, les faces de C et de

 C_F sont les mêmes.

x est un point frontière de C_F si et seulement si x appartient à une face de C_F distincte de C_F , donc à une face de C distincte de C.

(c) – Supposons C d'intérieur non vide, soit x_0 un point intérieur à C. Soit $A = \{\lambda \in [0, 1] \mid \lambda x + (1 - \lambda) x_0 \in C\}$. x_0 est intérieur à C, donc A contient un intervalle $[0, \lambda]$

avec $\lambda > 0$. $x \notin C$ donc $1 \notin A$. Enfin C est fermé convexe, donc A est un segment de la forme $[0, \alpha]$ avec $0 < \alpha < 1$.

Posons alors $x_1 = \alpha x + (1 - \alpha) x_0$. $x_1 \in C$, mais $x_1 \notin \overset{\circ}{C}$ par définition de la borne supérieure, donc $x_1 \in \mathrm{Fr}C.$

D'après ??, x_1 appartient à une face F stricte de C donc il existe $w \in C^+$ tel que $F = C \cap \{w\}^{\perp}$.

 $(x_1|w) = 0$ et $(x_0|w) > 0$ car $x_0 \in \overset{\circ}{C}$, donc $0 = (w|x_1) = \alpha (w|x) + (1 - \alpha) (w|x_0)$. Ainsi (w|x) < 0. - Si C est d'intérieur vide, on se ramène au cas précédent grâce à la question ??.

9. (a) Soit C le cône à faces engendré par c_1, \ldots, c_r .

- Soit
$$F$$
 une face de C . $\exists w \in C^+$, $F = C \cap \{w\}^\perp$. On pose $J = \{i \in [1, r] / (w|c_i) = 0\}$ et $C_J = \left\{\sum_{i \in J} \lambda_i c_i / \forall i \in J, \lambda_i \ge 0\right\}$. On constate que $C_J \subset F$.

Inversement, soit $x \in F$: $x = \sum_{i=1}^{\infty} \lambda_i c_i$ avec les $\lambda_i \ge 0$, d'où $0 = (w|x) = \sum_{i=1}^{\infty} \underbrace{\lambda_i (w|c_i)}_{\ge 0}$, donc $\forall i \in \mathbb{N}$

 $[1, r], \ \lambda_i \left(w | c_i \right) = 0.$ En portioulier $\forall i \neq I$

En particulier, $\forall i \notin J, \ \lambda_i = 0$, d'où $x \in C_J$. Finalement, $F = C_J$.

- J étant une partie de l'ensemble fini [1, r], le nombre de faces de C est au plus égal au nombre de parties J de [1, r], soit 2^r .

 ${\cal C}$ possè de donc un nombre fini de faces.

(b) Soient F_1, \ldots, F_q les faces de C distinctes de C. On écrit $F_i = C \cap \{w_i\}^{\perp}$, avec w_i élément non nul de C^+ . On pose alors $C' = \bigcap_{1 \le i \le q} \{w_i\}^+$.

- Soit $x \notin C$, alors d'après ??, il existe une face $F_i = C \cap \{w_i\}^{\perp}$ pour laquelle $(x|w_i) < 0$, donc $x \notin C'$. - Soit $x \in C$; puisque $w_i \in C^+$, $(x|w_i) \ge 0$, et ceci étant vrai pour tout $i, x \in C'$. Finalement, C = C'.

10. C'étant un cône à faces, il s'écrit sous la forme précédente : $C = \bigcap_{1 \le i \le q} \{w_i\}^+$, les w_i étant des vecteurs non nuls.

- Démontrons le lemme suivant : A_1, \ldots, A_k étant des parties de $E, A_1 + \cdots + A_k$ étant l'ensemble $\{x_1 + \cdots + x_k / x_1 \in A_k \in A_k \}$

alors
$$\left(\sum_{1 \le i \le k} A_i\right) = \bigcap_{1 \le i \le k} A_i^+$$
.
En effet :
- si $A \subset B$, on a clairement $B^+ \subset A^+$, d'où $\left(\sum A_i\right)^+ \subset A_j^+$ pour tout j , donc $\left(\sum A_i\right)^+ \subset \bigcap A_j^+$;
- si $x \in \bigcap A_j^+$, soit $(x_1, \dots, x_k) \in A_1 \times \dots \times A_k$, alors $\left(x | \sum_{i=1}^k x_i\right) = \sum_{i=1}^k \underbrace{(x|x_i)}_{\ge 0} \ge 0$, donc $x \in \left(\sum A_i\right)^+$.

- Appliquons alors le lemme à $A_i = \mathbb{R}^+ w_i$, la demi-droite dirigée par w_i .

$$C = \bigcap_{1 \le i \le q} \{w_i\}^+ = \bigcap_{1 \le i \le q} A_i^+ = \left(\sum_{1 \le i \le q} A_i\right)$$
$$\sum_{1 \le i \le q} A_i \text{ est par définition un cône à faces.}$$

Par conséquent, d'après la troisième partie, $C^+ = \left(\sum_{1 \le i \le q} A_i\right)^{++} = \sum_{1 \le i \le q} A_i$, donc C^+ est effectivement un cône à faces.