

My Ismail Mamouni

http://myismail.net

مَـوُنِي مُولَاِي اسمَاعيل

# Devoir Maison N° 2 (EVN)

X 2000

\* \* \*

Ce problème a pour objet l'étude de certains cônes dans des espaces euclidiens.

On désigne par E l'espace euclidien  $\mathbf{R}^n (n \ge 1)$ , par (.|.) son produit scalaire usuel, et par ||.|| la norme associée. Pour toute partie X de E, on note  $X^{\perp}$  (resp.  $X^+$ ) l'ensemble des éléments x de E satisfaisant (x|y) = 0 (resp.  $(x|y) \ge 0$ ) pour tout y de X.

Une partie C de E sera appelée  $c\^{o}ne$  à faces s'il existe une famille finie d'éléments  $c_1,\ldots,c_r$  (r>0) de E telle que C soit l'ensemble des combinaisons linéaires  $\sum_{i=1}^r \lambda_i c_i$  avec  $\lambda_1,\ldots,\lambda_r\geq 0$ . On supposera toujours les  $c_i$  non nuls, et on dira qu'ils engendrent C. Enfin on appelle face de C toute partie de C de la forme  $C\cap\{w\}^{\perp}$  avec  $w\in C^+$ .

La première partie est indépendante des suivantes.

#### Première partie

- 1. Vérifier que tout sous-espace vectoriel non nul de E est un cône à faces.
- **2.** Supposant n = r = 2, décrire (sans démonstration mais avec des figures) les ensembles C,  $C^+$  et donner sous chaque figure la liste des faces de C suivant les diverses positions relatives de  $c_1$  et  $c_2$ .
- **3.** Supposant que n = r = 3 et que  $(c_1, c_2, c_3)$  est une base orthogonale de E, décrire sans démonstration C,  $C^+$  et les faces de C.

### Deuxième partie

On se propose, dans cette partie, de démontrer que tout cône à faces est fermé dans E.

- **4.a)** Soit K une partie compacte de E ne contenant pas 0. Montrer que l'ensemble des éléments de la forme  $\lambda x$ , où  $\lambda \in \mathbf{R}_+$  et  $x \in K$ , est fermé dans E.
- **b)** Ce résultat subsiste-t-il si l'on suppose K seulement fermé, ou si K, compact, contient 0?
  - **5.** On considère maintenant un cône à faces C engendré par des éléments  $c_1, \ldots, c_r$ .
- a) Montrer que C est fermé lorsqu'il ne contient aucune droite vectorielle. [On pourra introduire l'ensemble K des éléments  $\sum_{i=1}^{r} \lambda_i c_i$  avec  $\lambda_i \in \mathbf{R}_+$  et  $\sum_{i=1}^{r} \lambda_i = 1$ .]
- b) Soit V un sous-espace vectoriel de E (éventuellement réduit à 0) contenu dans C et distinct de C. On note P le projecteur orthogonal de E sur  $V^{\perp}$ . Vérifier que P(C) est un cône à faces contenu dans C.
- c) Supposant que P(C) contient une droite vectorielle, construire un sous-espace vectoriel de E contenu dans C et contenant strictement V.
  - d) Montrer que C est fermé dans E.

### Troisième partie

- **6.** On se propose ici de démontrer que tout cône à faces C vérifie  $(C^+)^+ = C$ .
- a) Soit a un élément de E. Montrer que la fonction réelle définie sur C par  $c \mapsto ||c a||$  atteint sa borne inférieure en un point unique de C. On le notera p(a).
  - b) Déterminer le signe de (p(a) a|c) lorsque  $c \in C$ , ainsi que la valeur de (p(a) a|p(a)).
  - c) Conclure.

### Quatrième partie

On souhaite maintenant démontrer que tout cône à faces est l'intersection d'une famille finie de demi-espaces fermés (on appelle demi-espace fermé tout sous-ensemble de E de la forme  $\{a\}^+$  avec  $a \in E, a \neq 0$ ).

- 7. Démontrer l'équivalence des conditions suivantes relatives à un cône à faces C:
  - $(\alpha)$  le sous-espace vectoriel de E engendré par C est égal à E;
  - $(\beta)$  l'intérieur de C est non vide.
- 8. On suppose dans cette question les conditions de la question 7. satisfaites pour un cône à faces C.
  - a) Démontrer l'équivalence des conditions suivantes relatives à un élément x de C:
  - $(\alpha')$  x est un point frontière de C;
  - $(\beta')$  x appartient à une face de C distincte de C.
- **b)** Que subsisterait-il de ce résultat si l'on ne supposait pas satisfaites les conditions de la question **7.**?
- c) Soit x un point de E n'appartenant pas à C. Construire une face F de C, distincte de C et ayant la propriété suivante : pour tout  $w \in C^+$  tel que  $F = C \cap \{w\}^{\perp}$ , on a (x|w) < 0.

On pourra considérer le segment de droite joignant x à un point  $x_0$  de l'intérieur de C.

- 9.a) Montrer que l'ensemble des faces d'un cône à faces est fini.
- b) Montrer que tout cône à faces est l'intersection d'une famille finie de demi-espaces fermés.
  - 10. Déduire de ce qui précède que, si C est un cône à faces, il en est de même de  $C^+$ .

\* \*

\*

# Corrigé

# Partie I

- 1. Soit F un sous-espace vectoriel non nul de E, et  $(u_1, \ldots, u_p)$  une base de F. F est l'ensemble des combinaisons linéaires à coefficients positifs ou nuls des vecteurs  $(u_1, \ldots, u_p u_1, \ldots, -u_p)$ , donc F est un cône à faces.
- 2. Distinguons quatre cas, selon la position respective de  $c_1$  et  $c_2$ :



Dans les cas 2 et 4, les faces de C sont le vecteur nul et les deux demi-droites  $\mathbb{R}^+c_1$  et  $\mathbb{R}^+c_2$ . Dans les cas 1 et 3, les seules faces de C sont C lui-même, et bien sûr le vecteur nul.

3.  $\left(\frac{c_1}{\|c_1\|}, \frac{c_2}{\|c_2\|}, \frac{c_3}{\|c_3\|}\right)$  est une base orthonormée de E. C est alors le quadrant formé des vecteurs  $xc_1 + yc_2 + zc_3$  avec  $x \geq 0$ ,  $y \geq 0$  et  $z \geq 0$ .  $C^+ = C$ .

Les faces de C sont les quarts de plan  $(x \ge 0, y \ge 0, z = 0)$ ,  $(x \ge 0, y = 0, z \ge 0)$ ,  $(x = 0, y \ge 0, z \ge 0)$ , ainsi que les demi-droites  $\mathbb{R}^+c_1$ ,  $\mathbb{R}^+c_2$ ,  $\mathbb{R}^+c_3$  et le vecteur nul.

## Partie II

4. (a) Soit  $(\lambda_n x_n)_{n \in \mathbb{N}}$  une suite convergente vers y,  $(x_n)_{n \in \mathbb{N}}$  étant une suite dans K et  $(\lambda_n)_{n \in \mathbb{N}}$  une suite dans  $\mathbb{R}^+$ . On veut montrer que y appartient à  $L = \{\lambda x \ / \ \lambda \in \mathbb{R}^+, \ x \in K\}$ .

Par compacité de K, on peut extraire de  $(x_n)_n$  une suite  $(x_{\phi(n)})_n$  qui converge vers  $x \in K$ . 0 n'appartenant pas à K,  $x \neq 0$ , donc il existe  $n_1$  tel que  $\forall n \geq n_1$ ,  $||x_{\phi(n)}|| \geq \frac{||x||}{2}$ .

 $(\lambda_{\phi(n)}x_{\phi(n)})_n$  converge vers y, donc il existe  $n_2$  tel que  $\forall n \geq n_2$ ,  $\|\lambda_{\phi(n)}^2x_{\phi(n)}\| \leq 1 + \|y\|$ .

Ainsi,  $\forall n \geq \max(n_1, n_2)$ ,  $|\lambda_{\phi(n)}| \leq 2 \frac{1 + ||y||}{||x||}$ .  $(\lambda_{\phi(n)})_n$  est donc une suite bornée, on peut donc en extraire une sous-suite convergente  $(\lambda_{(\phi \circ \psi)(n)})_n$  de limite  $\lambda$ .

Dés lors,  $(x_{(\phi \circ \psi)(n)})_n$  converge vers x par extraction, et  $(\lambda_{(\phi \circ \psi)(n)}x_{(\phi \circ \psi)(n)})_n$  converge vers  $\lambda x$ . Par unicité de limite, il en résulte que  $y = \lambda x$ .

Toute suite convergente d'éléments de L a sa limite dans L, donc L est fermé.

- (b) Deux contre-exemples:
  - Soit  $K = \{(x, y) \in \mathbb{R}^2 / x \ge 0 \text{ et } xy = 1\}$ . K est fermé (comme graphe de la fonction  $x \mapsto \frac{1}{x} \operatorname{sur} \mathbb{R}^{*+}$ ) non borné.

On vérifie aisément que  $L = \{0\} \cup \{(x,y) \in \mathbb{R}^2 \mid x > 0 \text{ et } y > 0\}$ . Donc  $\bar{L} = \{(x,y) \in \mathbb{R}^2 \mid x \geq 0 \text{ et } y \geq 0\}$  est distinct de L, donc L n'est pas fermé.



- Soit  $K = \left\{ (x,y) \in \mathbb{R}^2 \ / \ x \ge 0 \text{ et } x^2 + (y-1)^2 = 1 \right\}$  le demicercle de centre (0,1) de rayon 1 du demi-plan  $x \ge 0$ . K est compact (intersection d'un cercle, compact, et d'un demi-plan fermé). On vérifie de même aisément que  $L = \{0\} \cup \{(x,y) \in \mathbb{R}^2 \ / \ x \ge 0 \text{ et } y > 0\}$ .

Donc  $\bar{L} = \{(x, y) \in \mathbb{R}^2 \mid x \ge 0 \text{ et } y \ge 0\}$  est distinct de L, donc L n'est pas fermé.

5. (a) – Soit donc 
$$K = \left\{ \sum_{i=1}^{r} \lambda_i c_i / \forall i, \ \lambda_i \in \mathbb{R}^+ \text{ et } \sum_{i=1}^{r} \lambda_i = 1 \right\}.$$

Soit aussi  $T = \left\{ (\lambda_1, \dots, \lambda_r) \in \mathbb{R}^r / \forall i, \ \lambda_i \in \mathbb{R}^+ \text{ et } \sum_{i=1}^r \lambda_i = 1 \right\}$ . T est fermé borné dans  $\mathbb{R}^r$ , donc est compact.

Soit encore  $\phi: T \longrightarrow E$  .  $\phi$  est continue comme restriction à T d'une application  $(\lambda_1, \ldots, \lambda_r) \longmapsto \sum_{i=1}^r \lambda_i c_i$ 

linéaire. Ainsi  $K = \phi(T)$  est compact dans E

– On suppose que  ${\cal C}$  ne contient aucune droite vectorielle.

Si 0 appartenait à K, on pourrait écrire  $0 = \sum_{i=1}^{r} \lambda_i c_i$ , avec les  $\lambda_i \geq 0$  et  $\sum_{i=1}^{n} \lambda_i = 1$ . Alors par exemple

 $\lambda_1$  serait non nul, ce qui permettrait d'écrire  $-c_1 = \frac{\sum_{i=2}^r \lambda_i c_i}{\lambda_1}$ , et C contiendrait la droite vectorielle  $\mathbb{R}c_1$ , ce qui est impossible.

Finalement, K est un compact ne contenant pas 0, donc  $\{\lambda x \mid \lambda \geq 0 \text{ et } x \in K\}$  est fermé d'après ??.

Or tout élément de C s'écrit sous la forme  $\sum_{i=1}^{r} \lambda_i c_i$ , soit  $\lambda x$ , avec  $\lambda = \sum_{i=1}^{r} \lambda_i$  et  $x = \sum_{i=1}^{r} \frac{\lambda_i}{\lambda} c_i$  (lorsque

les  $\lambda_i$  sont non tous nuls, sinon on prend x quelconque dans C), de sorte que  $\sum_{i=1}^r \frac{\lambda_i}{\lambda} = 1$ , et donc  $x \in K$ .

Ainsi  $C = \{\lambda x \ / \ \lambda \ge 0 \text{ et } x \in K\}$  , et C est donc fermé.

- (b) On remarque qu'un cône à faces C vérifie clairement les deux propriétés suivantes :  $C+C\subset C$ , et  $\forall \lambda\geq 0,\ \lambda C\subset C$ .
  - On pose  $c_i' = P\left(c_i\right)$  pour  $1 \le i \le r$ . On enlève les éléments  $c_i'$  qui sont nuls, et quitte à renuméroter, on peut supposer que  $c_i' \ne 0$  pour  $1 \le i \le q$ , et  $c_i' = 0$  pour  $q + 1 \le i \le r$ .

On constate alors que  $P(C) = \left\{ \sum_{i=1}^{r} \lambda_i c_i' / \forall i, \lambda_i \in \mathbb{R}^+ \right\}$  par double inclusion immédiate, ce qui

prouve que P(C) est le cône à faces engendré par  $(c'_1, \ldots, c'_q)$ .

- Soit  $x \in C$ . On peut écrire x = P(x) + y avec  $y \in V$  (décomposition dans  $V^{\perp} \oplus V$ ), d'où P(x) = x + (-y). Or  $-y \in V$  donc  $-y \in C$ , d'où  $P(x) \in C + C$  d'où  $P(x) \in C$ . Ainsi  $P(C) \subset C$ .
- (c) Soit  $\mathbb{R}x$  une droite incluse dans P(C). x est un vecteur non nul de P(C), donc il existe  $y \in C$  tel que P(y) = x.  $y \notin V$  car  $x \neq 0$ . Posons alors  $W = V + \mathbb{R}y$ , W est un sous-espace vectoriel de E contenant strictement V (car  $y \notin V$ )

 $y \in C$  donc  $\{\lambda y \mid \lambda \geq 0\} \subset C$ .  $-x \in P(C)$ , donc il existe  $y' \in C$  tel que P(y') = -x.

On écrit y = x + z, y' = -x + z' avec z et z' éléments de V.

On en déduit -y=y'-z'-z. or  $-z'-z\in V\subset C$ , et  $y'\in C$  donc  $-y\in C$ , d'où  $\{\lambda y\ /\ \lambda\leq 0\}\subset C$ .

Finalement  $\mathbb{R}y \subset C$  et  $W \subset C$ .

- (d) Si C ne contient aucune droite vectorielle, C est fermé d'après ??.
  - Dans le cas contraire, soit V un sous-espace vectoriel de E (non réduit à  $\{0\}$ ), de dimension maximale parmi les sous-espaces inclus dans C. Soit p le projecteur orthogonal sur  $V^{\perp}$ . D'après  $\ref{eq:contraction}$  et la maximalité de V, P(C) ne contient aucune droite vectorielle et, d'après  $\ref{eq:contraction}$ , est un cône à faces ; en appliquant  $\ref{eq:contraction}$ , on en déduit que P(C) est fermé dans E.

On montre à présent que  $C = P^{-1}(P(C))$ .

- l'inclusion  $C \subset P^{-1}(P(C))$  est évidente (elle est vraie pour tout ensemble et toute application);
- soit  $x \in P^{-1}(P(C))$ : il existe  $y \in C$  tel que P(x) = P(y), donc  $\exists y \in C, \exists z \in V, x = y + z$ ; or  $V \subset C$ , donc  $z \in C$ , d'où  $x \in C$ .

Finalement, p est linéaire, donc continue, et P(C) est fermé, donc  $P^{-1}(P(C))$  est fermé, donc C est fermé dans E.

# Partie III

- 6. (a) Soit  $\phi: C \longrightarrow \mathbb{R}$  ;  $\phi$  est continue (car 1-lipschitzienne), et à valeurs positives, donc elle admet une borne inférieure.
  - existence du minimum

Choisissons  $b \in C$ . Si  $c \notin B'(a, ||b-a||)$ , alors  $\phi(c) = ||c-a|| > \phi(b)$ .

Ainsi,  $\inf_{C} \phi = \inf_{C \cap \mathrm{B}'(a, ||b-a||)} \phi$ . Or  $C \cap \mathrm{B}'(a, ||b-a||)$  est fermé borné donc compact, et  $\phi$  est continue,

sa borne inférieure sur cet ensemble est donc atteinte. Il existe finalement  $x \in C$  tel que  $\phi(x) = \inf_{C} \phi$ .

- unicité du minimum Supposons que  $\inf_{C} \phi = \phi(c_1) = \phi(c_2)$ .

C étant convexe (c'est l'enveloppe convexe des demi-droites  $\mathbb{R}^+c_i$ ),  $\frac{c_1+c_2}{2}\in C$ .

$$2||c_1 - a||^2 + 2||c_2 - a||^2 = ||c_2 - c_1||^2 + 4\left\|\frac{c_1 + c_2}{2} - a\right\|^2$$
.

L'inégalité  $\phi\left(\frac{c_1+c_2}{2}\right) \geq \phi\left(c_1\right)$  se traduit alors par  $4\phi\left(c_1\right)^2 \geq ||c_2-c_1||^2 + 4\phi\left(c_1\right)^2$ , soit

 $||c_2-c_1||^2 \leq 0$ , et finalement  $c_1=c_2$ .

(b) – Démontrons d'abord le résultat suivant :  $\forall x \in C$ ,  $(P(a) - a | x - P(a)) \ge 0$  (E). Soit  $\lambda \in ]0, 1]$ ;  $\lambda x + (1 - \lambda) P(a) \in C$ , donc  $\|\lambda x + (1 - \lambda) P(a) - a\| \ge \|P(a) - a\|$ , d'où  $\|\lambda (x - P(a)) + P(a) - a\|^2 \ge \|P(a) - a\|^2$ .

Développons:  $\lambda^2 ||x - P(a)|| + 2\lambda (x - P(a) ||P(a) - a) \ge 0$ . Simplifiant alors par  $\lambda$ , et faisant tendre  $\lambda$  vers  $0^+$ , on obtient le résultat annoncé.

- Soit  $c \in C$ , alors  $c + P(a) \in C$ , donc en reportant dans  $(E) : (P(a) - a|c) \ge 0$ ; en particulier pour c = P(a) : (P(a) - a|P(a)) > 0.

De même,  $0 \in C$ , donc en reportant dans  $(E): (P(a) - a - P(a)) \ge 0$ .

Finalement, (P(a) - a|P(a)) = 0.

- (c) Soit  $x \in C$ . Par définition de  $C^+$ , pour tout  $y \in C^+$ ,  $(x|y) \ge 0$ , ce qui par définition de  $(C^+)^+$  signifie précisément que  $x \in (C^+)^+$ . Ainsi  $C \subset (C^+)^+$ .
  - Signific problems que  $c \in C$ , which  $c \in C$ ,  $c \in C$ ,

Finalement (P(a) - a|a) = 0, soit  $||P(a) - a||^2 = 0$ , i.e. P(a) = a, ce qui signifie que  $a \in C$ . Donc  $(C^+)^+ \subset C$ .

# Partie IV

7.  $-\alpha \Rightarrow \beta$ 

On suppose  $\operatorname{Vect} C = E$ . Il existe une base  $(v_1, \ldots, v_n)$  de E constituée d'éléments de C. Soit N la «norme sup» associée à cette base.

 $v_1, \ldots, v_n$  appartenant à C,  $\left\{ \sum_i \lambda_i v_i / \forall i, \ \lambda_i \geq 0 \right\} \subset C$ .

Soit  $v = \sum_{k=1}^{n} x_k v_k \in E$  tel que  $N\left(v - \sum_{i} v_i\right) < 1$ ; alors  $\forall k, |x_k - 1| < 1$ , donc  $\forall k, x_k \ge 0$ , donc  $v \in C$ .

Finalement C contient la boule de centre  $\sum_{i=1}^{n} v_i$  de rayon 1 pour la norme N. Les normes étant équivalentes

dans  $\mathbb{R}^n$ , le vecteur  $\sum_{i=1}^n v_i$  est intérieur à C.

 $-\beta \Rightarrow \alpha$ 

Soit x intérieur à C.  $\exists r > 0$ ,  $B(x, r) \subset C$ . Soit  $(e_1, \ldots, e_n)$  la base canonique de E.

 $P(t) = \det(x + te_1, x + te_2, \dots, x + te_n)$  est un polynôme en t, de terme de plus haut degré  $t^n$ . Il possède donc un nombre fini de racines, d'où l'existence de  $t_0 \in ]0, r[$  tel que  $P(t_0) \neq 0$ .

 $(x+te_1,x+te_2,\ldots,x+te_n)$  est donc une base de E constituée d'éléments de C.

8. (a)  $-\beta' \Rightarrow \alpha'$ 

x appartient à la face  $C \cap \{w\}^{\perp}$ , où  $w \in C^{+}$ .  $w \neq 0$  car cette face est distincte de C.

(x|w) = 0, donc  $\forall \lambda < 0$ ,  $(x + \lambda w|w) = \lambda ||w||^2 < 0$ . Par conséquent,  $x + \lambda w \notin C$  pour tout  $\lambda < 0$ , donc x n'appartient pas à l'intérieur de C.

x est donc un point frontière de C.

 $-\alpha' \Rightarrow \beta'$ 

Soit  $x \in FrC$ . Soit S la sphère unité de E.  $S \cap C^+$  est fermé borné donc compact (en effet,  $C^+ = \bigcap_{S \in F} \{x \in E \mid (x|y) \geq 0\}$  est une intersection de fermés, donc est fermé).

L'application continue  $w \mapsto (x|w)$  atteint donc sa borne inférieure sur  $S \cap C^+$  en un point  $w_0$ .

Soit  $\alpha = (x|w_0)$ .  $\alpha \ge 0$  car  $w_0 \in C^+$ . Supposons  $\alpha > 0$ .

Soit y un élément quelconque de E tel que  $||y-x|| \leq \frac{\alpha}{2}$ 

Alors  $(x|w) - (y|w) \le |(x-y|w)| \le |(x-y|w)| \le |(x-y|w)| \le \frac{\alpha}{2} ||w||$ .

Donc  $\forall w \in C^+ \cap S$ ,  $(y|w) \ge (x|w) - \frac{\alpha}{2} \ge \frac{\alpha}{2}$ . Par homogénéité,  $\forall w \in C^+$ ,  $(y|w) \ge \frac{\alpha}{2} ||w|| \ge 0$ , ce qui prouve que  $y \in (C^+)^+$ .

D'après la ??,  $y \in C$  donc C contient la boule de centre x de rayon  $\frac{\alpha}{2}$ , ce qui est absurde puisque x est un point frontière de C.

Finalement,  $\alpha = 0$  d'où l'existence de  $w_0 \in C$  non nul tel que  $(x|w_0) = 0$ . x appartient donc à la face  $C \cap \{w_0\}^{\perp}$ , qui est distincte de C car d'après les conditions de la question ??, C n'est pas inclus dans le sous-espace strict  $\{w_0\}^{\perp}$ .

(b) On suppose maintenant que  $F = \operatorname{Vect} C$  est un sous-espace vectoriel strict de E. On note  $C_F$  le cône à faces C considéré comme une partie de F, de sorte que  $C_F^+ = \{x \in F \mid \forall y \in C, (x|y) \geq 0\}$ .

Si  $w \in C^+$ , on l'écrit  $w = w_1 + w_2$  avec  $w_1 \in F$  et  $w_2 \in F^{\perp}$ .  $\forall x \in C$ ,  $(x|w) = (x|w_1)$  d'où  $w_1 \in C_F^+$ , d'où  $C^+ \subset C_F^+ + F^{\perp}$ , et réciproquement, d'où  $C^+ = C_F^+ + F^{\perp}$ .

Une face de C s'écrit  $C \cap \{w\}^{\perp} = C \cap (F \cap \{w\}^{\perp}) = C \cap \{w_1\}^{\perp}$ . Par conséquent, les faces de C et de  $C_F$  sont les mêmes.

x est un point frontière de  $C_F$  si et seulement si x appartient à une face de  $C_F$  distincte de  $C_F$ , donc à une face de C distincte de C.

(c) – Supposons C d'intérieur non vide, soit  $x_0$  un point intérieur à C.

Soit  $A = \{\lambda \in [0,1] / \lambda x + (1-\lambda) x_0 \in C\}$ .  $x_0$  est intérieur à C, donc A contient un intervalle  $[0,\lambda]$  avec  $\lambda > 0$ .  $x \notin C$  donc  $1 \notin A$ . Enfin C est fermé convexe, donc A est un segment de la forme  $[0,\alpha]$  avec  $0 < \alpha < 1$ .

Posons alors  $x_1 = \alpha x + (1 - \alpha) x_0$ .  $x_1 \in C$ , mais  $x_1 \notin C$  par définition de la borne supérieure, donc  $x_1 \in FrC$ .

D'après ??,  $x_1$  appartient à une face F stricte de C donc il existe  $w \in C^+$  tel que  $F = C \cap \{w\}^{\perp}$ .

$$(x_1|w) = 0$$
 et  $(x_0|w) > 0$  car  $x_0 \in \overset{\circ}{C}$ , donc  $0 = (w|x_1) = \alpha(w|x) + (1-\alpha)(w|x_0)$ . Ainsi  $(w|x) < 0$ . – Si  $C$  est d'intérieur vide, on se ramène au cas précédent grâce à la question  $\ref{eq:condition}$ ?

- 9. (a) Soit C le cône à faces engendré par  $c_1, \ldots, c_r$ .

   Soit F une face de C.  $\exists w \in C^+$ ,  $F = C \cap \{w\}^{\perp}$ . On pose  $J = \{i \in [1, r] / (w|c_i) = 0\}$  et  $C_J = C$  $\left\{ \sum_{i \in I} \lambda_i c_i / \forall i \in J, \, \lambda_i \geq 0 \right\}. \text{ On constate que } C_J \subset F.$

Inversement, soit 
$$x \in F$$
:  $x = \sum_{i=1}^{r} \lambda_i c_i$  avec les  $\lambda_i \geq 0$ , d'où  $0 = (w|x) = \sum_{i=1}^{r} \underbrace{\lambda_i (w|c_i)}_{\geq 0}$ , donc  $\forall i \in I$ 

$$[1, r], \ \lambda_i \left( w | c_i \right) = 0.$$

En particulier,  $\forall i \notin J$ ,  $\lambda_i = 0$ , d'où  $x \in C_J$ .

Finalement,  $F = C_J$ .

-J étant une partie de l'ensemble fini [1,r], le nombre de faces de C est au plus égal au nombre de parties J de [1, r], soit  $2^r$ .

C possède donc un nombre fini de faces.

- (b) Soient  $F_1, \ldots, F_q$  les faces de C distinctes de C. On écrit  $F_i = C \cap \{w_i\}^{\perp}$ , avec  $w_i$  élément non nul de  $C^+$ . On pose alors  $C' = \bigcap \{w_i\}^+$ .
  - Soit  $x \notin C$ , alors d'après ??, il existe une face  $F_i = C \cap \{w_i\}^{\perp}$  pour laquelle  $(x|w_i) < 0$ , donc  $x \notin C'$ . Soit  $x \in C$ ; puisque  $w_i \in C^+$ ,  $(x|w_i) \geq 0$ , et ceci étant vrai pour tout  $i, x \in C'$ .
  - Finalement, C = C'.
- 10. C étant un cône à faces, il s'écrit sous la forme précédente :  $C = \bigcap_{1 \le i \le n} \{w_i\}^+$ , les  $w_i$  étant des vecteurs non
  - $\text{ D\'emontrons le lemme suivant}: A_1, \ldots, A_k \text{ \'etant des parties de } E, A_1 + \cdots + A_k \text{ \'etant l'ensemble } \{x_1 + \cdots + x_k \ / \ x_1 \in A_k \}$

alors 
$$\left(\sum_{1\leq i\leq k} A_i\right)^+ = \bigcap_{1\leq i\leq k} A_i^+$$
.

- si  $A \subset B$ , on a clairement  $B^+ \subset A^+$ , d'où  $\left(\sum A_i\right)^+ \subset A_j^+$  pour tout j, donc  $\left(\sum A_i\right)^+ \subset \bigcap A_j^+$ ;
- $\text{ si } x \in \bigcap A_j^+, \text{ soit } (x_1, \dots, x_k) \in A_1 \times \dots \times A_k, \text{ alors } \left( x | \sum_{i=1}^k x_i \right) = \sum_{i=1}^k \underbrace{(x | x_i)}_{>0} \ge 0, \text{ donc } x \in \left( \sum A_i \right)^+.$

- Appliquons alors le lemme à 
$$A_i = \mathbb{R}^+ w_i$$
, la demi-droite dirigée par  $w_i$ .

$$C = \bigcap_{1 \le i \le q} \{w_i\}^+ = \bigcap_{1 \le i \le q} A_i^+ = \left(\sum_{1 \le i \le q} A_i\right)^+.$$

$$\sum_{1 \le i \le q} A_i \text{ est par définition un cône à faces.}$$

Par conséquent, d'après la troisième partie,  $C^+ = \left(\sum_{1 \le i \le a} A_i\right)^{++} = \sum_{1 \le i \le a} A_i$ , donc  $C^+$  est effectivement un cône à faces.