

Devoir Maison (EVN)

Distance à un hyperplan

Partie II

H est un hyperplan d'un IR-espace vectoriel normé $E,\,h$ une forme linéaire non nulle sur E dont le noyau est égal à H.

- 1) Dans cette question E est un \mathbb{R} -espace vectoriel normé de dimension finie, on désigne par x_0 un vecteur de E.
 - a) On note $d(x_0, H)$ la distance de x_0 à l'hyperplan H. Montrer qu'il existe une suite $(y_n)_{n \in \mathbb{N}}$ d'éléments de H tels que :

$$\lim_{n \to +\infty} ||x_0 - y_n|| = d(x_0, H)$$

- b) Montrer qu'il existe une suite $(y_{\varphi(n)})_{n\in\mathbb{N}}$ extraite de la suite $(y_n)_{n\in\mathbb{N}}$ qui converge vers un élément de H.
- c) En déduire qu'il existe b appartenant à l'hyperplan H tel que :

$$d\left(x_{0},H\right) = \left\|x_{0} - b\right\|$$

On dit alors que la distance de x_0 à l'hyperplan H est atteinte en b.

- 2) On suppose dans cette question que E est un R-espace vectoriel normé de dimension quelconque.
 - a) Montrer que, si h est une forme linéaire continue sur E, alors le noyau, $\ker(h)$, est fermé dans E.
 - **b)** Montrer que, si le noyau de h est fermé, alors h est continue. Indication : on pourra raisonner par l'absurde.
 - c) Montrer que, si H est un hyperplan de E, alors l'adhérence \overline{H} de H est un sous-espace vectoriel de E.
 - d) En déduire que tout hyperplan de E est fermé ou dense dans E.

Partie III

On suppose dans cette partie que E est un \mathbb{R} -espace muni d'un produit scalaire (espace préhilbertien) (|), et que H est un hyperplan dense dans E.

- 1) Déterminer H^{\perp} , l'orthogonal de H. Rappel : $H^{\perp} = \{x \in E \mid \forall y \in H \ (x \mid y) = 0\}$
- **2)** Que dire de $H \oplus H^{\perp}$?
- 3) Pour tout vecteur x de E, calculer la distance d(x, H).
- 4) La distance d(x, H) est-elle toujours atteinte? Justifier.

Partie IV

On suppose, dans cette partie, que H est un hyperplan fermé d'un \mathbb{R} -espace vectoriel normé E de dimension quelconque. H est le noyau de la forme linéaire h, continue, non nulle sur E. x_0 désigne un vecteur fixé de E.

1) On considère $\mathcal{L}_c(E,\mathbb{R})$ l'ensemble des formes linéaires continues définies sur E. Sur cet espace vectoriel on définit l'application suivante :

$$|\| \|| : \mathcal{L}_c(E, \mathbb{R}) \longrightarrow \mathbb{R}^+$$

$$f \longmapsto \sup_{x \in E, x \neq 0} \frac{|f(x)|}{\|x\|}$$

Montrer que cette application est correctement définie et définie une norme sur $\mathscr{L}_c(E,\mathbb{R})$. On appelle cette norme, norme subordonnée à $\| \ \|$.

2) a) Montrer que, pour tout $y \in H$ on a :

$$||x_0 - y|| \geqslant \frac{|h(x_0)|}{|||h|||}$$

- **b)** En déduire que la distance de x_0 à H est supérieure ou égale à $\frac{|h(x_0)|}{|||h|||}$.
- c) Montrer que $d(x_0, H) = 0$ si et seulement si $x_0 \in H$.
- d) On considère dans cette question $x \notin H$.
 - i) Montrer qu'il existe une suite $(w_n)_{n\in\mathbb{N}}$ d'éléments de $E\setminus\{0\}$ vérifiant :

$$|||h||| = \lim_{n \to +\infty} \frac{|h(w_n)|}{||w_n||}$$

- ii) Montrer que, pour tout entier n, il existe un réel λ_n non nul et un vecteur y_n de H tel que $w_n = \lambda_n x_0 + y_n$.
- iii) Prouver que, pour tout entier n:

$$\frac{|h\left(w_{n}\right)|}{\|w_{n}\|} \leqslant \frac{|h\left(x_{0}\right)|}{d\left(x_{0}, H\right)}$$

e) En déduire que, pour tout vecteur x_0 de E, on a

$$d(x_0, H) = \frac{|h(x_0)|}{||h|||}$$

3) Dans cette question, E est l'ensemble des suites réelles de limite nulle, on munit cet ensemble de la norme infinie, c'est à dire que, si u est un élément de E avec $u = (u_n)_{n \in \mathbb{N}}$, alors $||u||_{\infty} = \sup_{n \in \mathbb{N}} |u_n|$. h est l'application définie sur E dans \mathbb{R} par :

$$h(u) = \sum_{n=0}^{+\infty} \frac{u_n}{2^{n+1}}$$

- a) Montrer que la série $\sum \frac{u_n}{2^{n+1}}$ est convergente.
- b) Montrer que h est une forme linéaire continue non nulle sur E et que $|||h||| \le 1$.
- c) Soit $(v_p)_{p\in\mathbb{N}}$ une suite d'éléments de E, on notera $v_p(n)$ le terme de rang n de la suite v_p . On définit v_p par :

$$\left\{ \begin{array}{l} v_p(n) = 1 \text{ si } 0 \leqslant n \leqslant p \\ v_p(n) = 0 \text{ si } n > p \end{array} \right.$$

Calculer $\lim_{p \to +\infty} \frac{\left|h\left(v_{p}\right)\right|}{\left\|v_{p}\right\|_{\infty}}$, en déduire $\left|\left\|h\right\|\right|$.

- d) Montrer qu'il n'existe pas d'élément u non nul de E telle que : $||h|| = \frac{|h(u)|}{||u||_{\infty}}$
- e) On note H le noyau de h, vérifier que H est un hyperplan fermé de E.
- f) Montrer que la distance d'un vecteur x de E à l'hyperplan H n'est pas toujours atteinte.

Partie II

H est un hyperplan d'un \mathbb{R} -espace vectoriel normé E, h une forme linéaire non nulle sur E dont le noyau est égal à H.

- 1) Dans cette question E est un \mathbb{R} -espace vectoriel normé de dimension finie, on désigne par x_0 un vecteur de E.
 - a) On note $d(x_0, H)$ la distance de x_0 à l'hyperplan H. Montrer qu'il existe une suite $(y_n)_{n\in\mathbb{N}}$ d'éléments de H tels que :

$$\lim_{n \to +\infty} \|x_0 - y_n\| = d\left(x_0, H\right)$$

Correction: Par caractérisation de la borne inférieure, $\forall \varepsilon > 0, \exists y \in H, d(x_0, H) \leq ||x_0 - y||$ $y \| < d(x_0, H) + \varepsilon$. On applique ceci à $\varepsilon = \frac{1}{n+1}$ pour $n \in \mathbb{N}$ et on note y_n un des $y \in H$ vérifiant l'inégalité. On a donc

$$\forall n \in \mathbb{N}, \quad y_n \in H \quad \text{ et } \quad d(x_0, H) \le ||x_0 - y_n|| < d(x_0, H) + \frac{1}{n+1}$$

donc il existe une suite $(y_n)_{n\in\mathbb{N}}$ telle que $\forall n\in\mathbb{N},\ y_n\in H$ et $\lim_{n\to+\infty}\|x_0-y_n\|=d(x_0,H)$.

b) Montrer qu'il existe une suite $(y_{\varphi(n)})_{n\in\mathbb{N}}$ extraite de la suite $(y_n)_{n\in\mathbb{N}}$ qui converge vers un élément de H.

Correction: On a $\forall n \in \mathbb{N}, ||y_n|| = ||y_n - x_0 + x_0|| \le ||y_n - x_0|| + ||x_0||$ et la suite $(||x_0 - y_n||)_{n \in \mathbb{N}}$ est bornée puisqu'elle converge donc la suite $(\|y_n\|)_{n\in\mathbb{N}}$ est aussi bornée. Le théorème de Bolzano-Weierstrass donne alors l'existence d'une suite $(y_{\varphi(p)})_{p\in\mathbb{N}}$ extraite de $(y_n)_{n\in\mathbb{N}}$ qui converge dans E. Mais, quand E est de dimension finie, tous ses sous-espaces vectoriels sont fermés donc H est fermé. Comme $\forall p \in \mathbb{N}, \ y_{\varphi(p)} \in H$, on a $z_0 = \lim_{p \to +\infty} y_{\varphi(p)} \in H$. D'autre part, la suite $(\|x_0-y_{\varphi(p)}\|)_{p\in\mathbb{N}}$ est extraite de la suite $(\|x_0-y_n\|)_{n\in\mathbb{N}}$ qui converge vers $d(x_0,H)$ donc elle converge vers la même limite. Enfin, par continuité de la norme, $\|x_0 - y_{\varphi(p)}\| \underset{p \to +\infty}{\longrightarrow} \|x_0 - z_0\|$ et donc, par unicité de la limite, $||x_0 - z_0|| = d(x_0, H)$. En conclusion, $|\exists z_0 \in H, ||x_0 - z_0|| = d(x_0, H)|$.

c) En déduire qu'il existe b appartenant à l'hyperplan H tel que :

$$d(x_0, H) = ||x_0 - b||$$

On dit alors que la distance de x_0 à l'hyperplan H est atteinte en b.

Correction : cf plus haut avec $b = z_0$.

2) On suppose dans cette question que E est un IR-espace vectoriel normé de dimension quelconque.

a) Montrer que, si h est une forme linéaire continue sur E, alors le noyau, $\ker(h)$, est fermé dans E

Correction : Par définition, $\ker(h) = h^{-1}(\{0\})$ et le singleton $\{0\}$ est un fermé de IR. Or l'image réciproque d'un fermé par une application continue est un fermé donc si h est continue alors $\ker(h)$ est fermé dans E.

b) Montrer que, si le noyau de h est fermé, alors h est continue.

Indication: on pourra raisonner par l'absurde.

Correction: Supposons que la forme linéaire h ne soit pas continue, on a $\operatorname{non}(\exists K \geq 0, \ \forall x \in E, \ |h(x)| \leq K \|x\|)$ soit $\forall K \geq 0, \ \exists x \in E, \ |h(x)| > K \|x\|$.

Appliquons ceci à K = n + 1 pour $n \in \mathbb{N}$ et notons x_n un $x \in E$ vérifiant la propriété : on a donc $|h(x_n)| > (n+1) \|x_n\|$. Ceci montre que $h(x_n) \neq 0$, on peut donc poser $t_n = \frac{x_n}{h(x_n)}$. On a alors $h(t_n) = \frac{h(x_n)}{h(x_n)} = 1$ et $\|t_n\| = \frac{\|x_n\|}{|h(x_n)|} < \frac{1}{n+1}$ donc $t_n \xrightarrow[n \to +\infty]{} 0_E$.

On a donc $\forall n \in \mathbb{N}$, $h(t_n - t_0) = h(t_n) - h(t_0) = 1 - 1 = 0$ donc $\forall n \in \mathbb{N}$, $t_n - t_0 \in H$ et $t_n - t_0 \xrightarrow[n \to +\infty]{} -t_0$ donc, puisque H est fermé, $-t_0 \in H$.

Mais ceci est faux car $h(-t_0) = -h(t_0) = -1$.

L'hypothèse de départ était donc fausse et on a bien si $\ker(h)$ est fermé dans E alors h est continue

c) Montrer que, si H est un hyperplan de E, alors l'adhérence \overline{H} de H est un sous-espace vectoriel de E.

Correction : $\overline{H} \supset H$ donc $\overline{H} \neq 0$ et si $(x,y) \in \overline{H}^2$ et $\lambda \in \mathbb{R}$, la caractérisation séquentielle de l'adhérence donne l'existence de deux suites $(x_n)_{n \in \mathbb{N}}$ et $(y_n)_{n \in \mathbb{N}}$ telles que $\forall n \in \mathbb{N}, (x_n, y_n) \in H^2$, $\lim_{n \to +\infty} x_n = x$, $\lim_{n \to +\infty} y_n = y$ et alors , par linéarité de la limite, $x + \lambda y = \lim_{n \to +\infty} (x_n + \lambda y_n)$ avec $\forall n \in \mathbb{N}, x_n + \lambda y_n \in H$ et donc $x + \lambda y \in \overline{H}$. Donc \overline{H} est un sous-espace vectoriel de E.

d) En déduire que tout hyperplan de E est fermé ou dense dans E.

Correction : Puisque $H \subset \overline{H}$, on a soit $H = \overline{H}$ et, dans ce cas, H est fermé, soit $H \subset \overline{H}$. Si $H \subset \overline{H}$, prenons $a \in \overline{H} \setminus H$ et soit $x \in E$ quelconque. On a $h(a) \neq 0$ puisque $a \notin H$ et on peut donc écrire $x = \frac{h(x)}{h(a)}a + \left(x - \frac{h(x)}{h(a)}a\right)$ avec $a \in \overline{H}$ et $h\left(x - \frac{h(x)}{h(a)}a\right) = h(x) - \frac{h(x)}{h(a)}h(a) = 0$ donc $\left(x - \frac{h(x)}{h(a)}a\right) \in H \subset \overline{H}$. Puisque \overline{H} est un sous-espace vectoriel de E, on a donc $x \in \overline{H}$ ce qui donne $E \subset \overline{H}$.

On peut donc conclure : \boxed{H} est fermé ou dense

Partie III

On suppose dans cette partie que E est un \mathbb{R} -espace muni d'un produit scalaire (espace préhilbertien) (|), et que H est un hyperplan dense dans E.

1) Déterminer H^{\perp} , l'orthogonal de H.

Rappel: $H^{\perp} = \{ x \in E \mid \forall y \in H \ (x \mid y) = 0 \}$

Correction : Soit $x \in H^{\perp}$. Par densité de H dans E, il existe une suite $(x_n)_{n \in \mathbb{N}}$ telle que $\forall n \in \mathbb{N}, x_n \in H$ et $\lim_{n \to +\infty} x_n = x$. On a donc $\forall n \in \mathbb{N}, (x \mid x_n) = 0$. Mais, par continuité du produit scalaire, $(x \mid x_n) \xrightarrow[n \to +\infty]{} (x \mid x)$ donc $(x \mid x) = 0$ et donc $x = 0_E$. Réciproquement $0_E \in H^{\perp}$ donc $H^{\perp} = \{0_E\}$

2) Que dire de $H \oplus H^{\perp}$?

Correction: $H \oplus H^{\perp} = H \oplus \{0_E\} \text{ donc } H \oplus H^{\perp} = H$.

3) Pour tout vecteur x de E, calculer la distance d(x, H).

Correction : Pour tout $x \in E$, il existe une suite $(x_n)_{n \in \mathbb{IN}}$ telle que $\forall n \in \mathbb{IN}$, $x_n \in H$ et $\lim_{n \to +\infty} x_n = x$. On a, par définition, $0 \le d(x, H) \le \|x - x_n\|$ car $x_n \in H$ et $\lim_{n \to +\infty} \|x - x_n\| = 0$ donc $|\forall x \in E, d(x, H) = 0|$.

4) La distance d(x, H) est-elle toujours atteinte? Justifier.

Correction : Si d(x, H) est atteinte, il existe $z_0 \in H$ tel que $0 = d(x, H) = ||x - z_0||$ donc $x = z_0$ et $x \in H$. La réciproque est claire donc d(x, H) n'est atteinte que si $x \in H$.

Partie IV

On suppose, dans cette partie, que H est un hyperplan fermé d'un \mathbb{R} -espace vectoriel normé E de dimension quelconque. H est le noyau de la forme linéaire h, continue, non nulle sur E. x_0 désigne un vecteur fixé de E.

1) On considère $\mathcal{L}_c(E, \mathbb{R})$ l'ensemble des formes linéaires continues définies sur E. Sur cet espace vectoriel on définit l'application suivante :

$$|\| \|| : \mathcal{L}_{c}(E, \mathbb{R}) \longrightarrow \mathbb{R}^{+}$$

$$f \longmapsto \sup_{x \in E, x \neq 0} \frac{|f(x)|}{\|x\|}$$

Montrer que cette application est correctement définie et définie une norme sur $\mathcal{L}_c(E,\mathbb{R})$. On appelle cette norme, norme subordonnée à $\| \cdot \|$.

Correction: En ayant écouté en cours on peut faire facilement cette question.

2) a) Montrer que, pour tout $y \in H$ on a :

$$||x_0 - y|| \geqslant \frac{|h(x_0)|}{||h|||}$$

Correction: On a $\forall x \in E, |h(x)| \le |\|h\|\|, \|x\|\|$ donc, pour $x = x_0 - y, |h(x_0)| \le |\|h\|\| \|x_0 - y\|$. Or $\|\|h\|\| \ne 0$ car h est non nulle donc $\forall y \in H, \|x_0 - y\| \ge \frac{|h(x_0)|}{\|\|h\|\|}$.

b) En déduire que la distance de x_0 à H est supérieure ou égale à $\frac{|h(x_0)|}{||h|||}$.

Correction : La borne inférieure étant le plus grand des minorants, $d(x_0, H) \ge \frac{|h(x_0)|}{|||h|||}$.

c) Montrer que $d(x_0, H) = 0$ si et seulement si $x_0 \in H$.

Correction : Si $d(x_0, H) = 0$, l'inégalité ci-dessus donne $h(x_0) = 0$ donc $x_0 \in H$. La réciproque est immédiate donc $d(x_0, H) = 0 \Leftrightarrow x_0 \in H$.

- d) On considère dans cette question $x \notin H$.
 - i) Montrer qu'il existe une suite $(w_n)_{n\in\mathbb{N}}$ d'éléments de $E\setminus\{0\}$ vérifiant :

$$|||h||| = \lim_{n \to +\infty} \frac{|h(w_n)|}{||w_n||}$$

Correction:

Par caractérisation de la borne supérieure, $\forall \varepsilon > 0$, $\exists w \neq 0_E$, $|||h||| \geq \frac{|h(w)|}{||w||} > |||h||| - \varepsilon$. On applique ceci à $\varepsilon = \frac{1}{n+1}$ pour $n \in \mathbb{N}$ et on note w_n un de ces $w \neq 0_E$. On a $\forall n \in \mathbb{N}$, $|||h||| - \frac{1}{n+1} < \frac{|h(w_n)|}{||w_n||} \leq |||h|||$ donc

il existe
$$(w_n)_{n\in\mathbb{N}}$$
 telle que $\forall n\in\mathbb{N},\ w_n\in E\setminus\{0_E\}$ et $|||h|||=\lim_{n\to+\infty}\frac{|h(w_n)|}{||w_n||}$

ii) Montrer que, pour tout entier n, il existe un réel λ_n non nul et un vecteur y_n de H tel que $w_n = \lambda_n x_0 + y_n$.

Correction: \diamond Puisque $x_0 \notin H$, on peut écrire tout $x \in E$ sous la forme $x = \frac{h(x)}{h(x_0)}x_0 + \left(x - \frac{h(x)}{h(x_0)}x_0\right) = \lambda x_0 + y$ avec $\lambda \in \mathbb{R}$ et $y \in H$ (vérification immédiate). Ainsi $\forall n \in \mathbb{N}, \ \exists (\lambda_n, y_n) \in \mathbb{R} \times H, \ w_n = \lambda_n x_0 + y_n$.

- \diamond Erreur d'énoncé : la condition $\lambda_n \neq 0$ n'est, en général, pas vérifiée pour tout $n \in \mathbb{N}$. Il suffit, par exemple, de choisir $w_0 \in H$ pour avoir $\lambda_0 = 0$ car l'écriture ci-dessus est unique puisque la somme $\mathbb{R}.x_0 \oplus H$ est directe. On ne modifie pas la valeur de la limite de $\frac{|h(w_n)|}{\|w_n\|}$ en modifiant la valeur de w_0 (ou d'un nombre fini de termes) donc $[\alpha]$ est toujours vérifié.
- $\diamond \text{ Par contre, on a } \exists n_0, \ \forall n \geq n_0, \ \lambda_n \neq 0 \text{ car } \frac{|h(w_n)|}{\|w_n\|} \xrightarrow[n \to +\infty]{} |\|h\|| > 0 \text{ donc } \exists n_0, \ \forall n \geq n_0, \ \frac{|h(w_n)|}{\|w_n\|} > 0 \text{ donc } \forall n \geq n_0, \ h(w_n) \neq 0 \text{ et donc } \lambda_n = \frac{h(w_n)}{h(x_0)} \neq 0.$
- iii) Prouver que, pour tout entier n:

$$\frac{|h\left(w_{n}\right)|}{\|w_{n}\|} \leqslant \frac{|h\left(x_{0}\right)|}{d\left(x_{0}, H\right)}$$

Correction : D'une part, $|h(w_n)| = |\lambda_n h(x_0) + y_n| = |\lambda_n| |h(x_0)|$ et, d'autre part, $\forall n \geq n_0$, $||w_n|| = |\lambda_n| ||x_0 - \frac{-y_n}{\lambda_n}|| \geq |\lambda_n| d(x_0, H)$ car $\frac{-y_n}{\lambda_n} \in H$. Donc, puisque $||w_n|| \neq 0$, $|\lambda_n| \neq 0$ pour $n \geq n_0$ et $d(x_0, H) \neq 0$ pour $x_0 \notin H$, on a

$$\forall n \ge n_0, \quad \frac{|h(w_n)|}{\|w_n\|} = \frac{|\lambda_n| |h(x_0)|}{\|w_n\|} \le \frac{|\lambda_n| |h(x_0)|}{|\lambda_n| d(x_0, H)} = \frac{|h(x_0)|}{d(x_0, H)}.$$

En faisant abstraction de l'erreur d'énoncé signalée plus haut, on a bien $\forall n \geq n_0, \ \frac{|h(w_n)|}{\|w_n\|} \leq \frac{|h(x_0)|}{d(x_0, H)}$

e) En déduire que, pour tout vecteur x_0 de E, on a

$$d(x_0, H) = \frac{|h(x_0)|}{|||h|||}$$

3) Dans cette question, E est l'ensemble des suites réelles de limite nulle, on munit cet ensemble de la norme infinie, c'est à dire que, si u est un élément de E avec $u=(u_n)_{n\in\mathbb{N}}$, alors $\|u\|_{\infty}=\sup_{n\in\mathbb{N}}|u_n|$. h est l'application définie sur E dans \mathbb{R} par :

$$h(u) = \sum_{n=0}^{+\infty} \frac{u_n}{2^{n+1}}$$

a) Montrer que la série $\sum \frac{u_n}{2^{n+1}}$ est convergente.

Correction : On a $\forall n \in \mathbb{N}, \ \left| \frac{u_n}{2^{n+1}} \right| \leq \frac{\|u\|_{\infty}}{2^{n+1}}$ et cette série majorante converge car c'est une série géométrique de raison $\frac{1}{2}$ donc $\left[\left(\sum \frac{u_n}{2^{n+1}} \right)_{n \in \mathbb{N}} \right]$ est absolument convergente donc convergente $\left[\left(\sum \frac{u_n}{2^{n+1}} \right)_{n \in \mathbb{N}} \right]$

b) Montrer que h est une forme linéaire continue non nulle sur E et que $|||h||| \le 1$. Correction: D'après [a], h est bien définie. Pour tout $(u, v) \in E^2$ et $\lambda \in \mathbb{R}$, on a

$$h(u + \lambda v) = \sum_{n=0}^{\infty} \frac{u_n + \lambda v_n}{2^{n+1}} = \sum_{n=0}^{\infty} \frac{u_n}{2^{n+1}} + \lambda \sum_{n=0}^{\infty} \frac{v_n}{2^{n+1}} = h(u) + \lambda h(v)$$

car toutes les séries convergent. Donc $h \in E^*$. D'autre part, l'inégalité vue au [a] donne

$$\forall u \in E, \quad |h(u)| \le \sum_{n=0}^{\infty} \left| \frac{u_n}{2^{n+1}} \right| \le \sum_{n=0}^{\infty} \frac{|u_n|}{2^{n+1}} \le \sum_{n=0}^{\infty} \frac{\|u\|_{\infty}}{2^{n+1}} = \|u\|_{\infty} \frac{\frac{1}{2}}{1 - \frac{1}{2}} = \|u\|_{\infty}$$

ce qui montre la continuité de h. De plus, $\forall u \neq 0$, $\frac{|h(u)|}{\|u\|_{\infty}} \leq 1$ donc, en prenant la borne supérieure, $|\|h\|| \leq 1$. Donc h est une forme linéaire continue et $|\|h\|| \leq 1$.

c) Soit $(v_p)_{p\in\mathbb{N}}$ une suite d'éléments de E, on notera $v_p(n)$ le terme de rang n de la suite v_p . On définit v_p par :

$$\begin{cases} v_p(n) = 1 \text{ si } 0 \leqslant n \leqslant p \\ v_p(n) = 0 \text{ si } n > p \end{cases}$$

Calculer $\lim_{p \to +\infty} \frac{|h(v_p)|}{\|v_p\|_{\infty}}$, en déduire $|\|h\||$.

Correction : \diamond On a clairement $v_p \in E$ et $||v_p||_{\infty} = 1$. Or

$$h(v_p) = \sum_{n=0}^{p} \frac{1}{2^{n+1}} = \frac{1}{2} \sum_{n=0}^{p} \frac{1}{2^n} = \frac{1}{2} \frac{1 - \frac{1}{2^{p+1}}}{1 - \frac{1}{2}} = 1 - \frac{1}{2^{p+1}} > 0$$

donc $\frac{|h(v_p)|}{\|v_p\|_{\infty}} = 1 - \frac{1}{2^{p+1}}$ et donc $\frac{|h(v_p)|}{\|v_p\|_{\infty}} \xrightarrow{p \to +\infty} 1$.

 \diamond On a $\frac{|h(v_p)|}{\|v_p\|_\infty} \leq |\|h\|| \leq 1$ donc $|\|h\|| = 1$.

d) Montrer qu'il n'existe pas d'élément u non nul de E telle que :

$$|||h||| = \frac{|h(u)|}{||u||_{\infty}}$$

Correction: Supposons qu'il existe $u \neq 0_E$ tel que $\frac{|h(u)|}{\|u\|_{\infty}} = |\|h\|| = 1$ on a donc $|h(u)| = \|u\|_{\infty}$ et toutes les inégalités du [b] sont des égalités. En particulier, $\sum_{n=0}^{\infty} \frac{|u_n|}{2^{n+1}} = \sum_{n=0}^{\infty} \frac{\|u\|_{\infty}}{2^{n+1}}$ donc $\sum_{n=0}^{\infty} \frac{\|u\|_{\infty} - |u_n|}{2^{n+1}} = 0$ avec $\forall n \in \mathbb{N}, \ \frac{\|u\|_{\infty} - |u_n|}{2^{n+1}} \geq 0$ donc on a $\forall n \in \mathbb{N}, \ |u_n| = \|u\|_{\infty}$. Mais alors

 $\sum_{n=0}^{\infty} \frac{\|u\|_{\infty} - |u_n|}{2^{n+1}} = 0 \text{ avec } \forall n \in \mathbb{N}, \ \frac{\|u\|_{\infty} - |u_n|}{2^{n+1}} \geq 0 \text{ donc on a } \forall n \in \mathbb{N}, \ |u_n| = \|u\|_{\infty}. \text{ Mais alors } \|u\|_{n} \xrightarrow[n \to +\infty]{} \|u\|_{\infty} \neq 0 \text{ en contradiction avec le fait que } u \in E \text{ donc } \lim_{n \to +\infty} |u_n| = 0.$

Donc il n'existe pas de $u \in E \setminus \{0_E\}$ tel que $\frac{|h(u)|}{\|u\|_{\infty}} = |\|h\||$.

e) On note H le noyau de h, vérifier que H est un hyperplan fermé de E. Correction: Il suffit d'utiliser le résultat du $[\mathbf{II.a}]$: puisque h est continue, $H = \ker h$ est fermé.

f) Montrer que la distance d'un vecteur x de E à l'hyperplan H n'est pas toujours atteinte. Correction: Soit $x_0 \notin H$, si $d(x_0, H)$ était atteinte alors $\exists z_0 \in H$, $d(x_0, H) = \|x_0 - z_0\|$. Or, selon [1.e], $d(x_0, H) = \frac{|h(x_0)|}{|\|h\||}$ donc $\|x_0 - z_0\| = \frac{|h(x_0)|}{|\|h\||} = \frac{|h(x_0) - h(z_0)|}{|\|h\||}$ et donc, puisque $x_0 - z_0 \neq 0_E$, $\frac{|h(x_0 - z_0)|}{\|x_0 - z_0\|} = |\|h\||$ ce qui est impossible vu [d]. Donc pour $x \notin H$, d(x, H) n'est