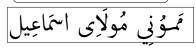


http://myismail.net



Préparation aux Concours (CNC-CCP)

Matrices Stochastiques

Notations et définitions

n désigne un entier naturel supérieur ou égal à 2 et p un entier naturel.

Une matrice $A = (a_{i,j})$ de $M_n(\mathbb{C})$ est dite stochastique ssi

(1)
$$\forall i, j \in \{1, 2, ..., n\}, a_{i,j} \in \mathbb{R}^+,$$

(2)
$$\forall i \in \{1, 2, ..., n\}$$
, $\sum_{i=1}^{n} a_{i,j} = 1$.

On note S_n l'ensemble de ces matrices.

Une suite $(A_p)_{p\in\mathbb{N}}$ de matrice de $\mathcal{M}_n(\mathbb{C})$ est dite converger vers B matrice de $M_n(\mathbb{C})$ ssi les n^2 suites complexes définies par les coefficients des matrices A_p convergent vers les coefficients respectifs de B.

On montre aisément que si (A_p) et (A'_p) convergent vers B et B' alors les suites $(A_p + A'_p)$ et $(A_p A'_p)$ convergent respectivement vers B + B' et BB'.

Enfin étant donné $A \in M_n(\mathbb{C})$ et $P = a_p X^p + \dots + a_1 X + a_0 \in \mathbb{C}[X]$, on note P(A) la matrice définie par $P(A) = a_n A^n + \dots + a_1 A + a_0 I_n \in M_n(\mathbb{C})$.

Préliminaire

Soit $A = (a_{i,j}) \in M_n(\mathbb{C})$. On note $X \in M_{n,1}(\mathbb{C})$ la colonne dont tous les coefficients valent 1.

- 1. Montrer que AX = X ssi $\forall i \in \{1, 2..., n\}$, $\sum_{i=1}^{n} a_{i,j} = 1$.
- 2. En déduire que S_n est stable pour le produit matriciel.

Partie I : Puissance des matrices stochastique d'ordre 2

La forme générale d'une matrice stochastique d'ordre 2 est $A = \begin{pmatrix} a & 1-a \\ 1-b & b \end{pmatrix}$ avec $a, b \in [0,1]$.

- 1. Calculer A^p dans les cas a = b = 1 et a = b = 0.
- 2. On suppose maintenant $(a,b) \neq (1,1)$ et $(a,b) \neq (0,0)$.
- 2.a Calculer P(A) où P = (X-1)(X-(a+b-1))
- 2.b Exprimer le reste de la division euclidienne de X^p par P.
- 2.c En déduire l'expression de A^p en fonction de a,b et p.
- 2.d Montrer que la suite (A^p) converge vers une limite que l'on précisera.

Partie II : Exemple de calcul de puissances d'une matrice stochastique d'ordre 3

On considère E l'ensemble des matrices carrées d'ordre 3 de la forme $M(a,b) = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ avec (U,V).

- 1. Montrer que E un sous-espace vectoriel de $M_3(\mathbb{C})$ dont on précisera une base et la dimension.
- 2. On note $U = \frac{1}{3} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ et V = I U.

- 2.a Montrer que la famille (U,V) forme une base de E. Quelles sont les coordonnées de M(a,b) dans cette base ?
- 2.b Calculer U^2 , V^2 , UV et VU.
- 2.c Pour $\alpha, \beta \in \mathbb{C}$ et $p \ge 1$, exprimer $(\alpha U + \beta V)^p$ en fonction de α, β, U, V et p. En déduire l'expression de $M(a,b)^p$ en fonction de U et V.
- 3. A quelles conditions sur a et b, une matrice M(a,b) de E appartient-elle à S_3 ? On suppose ces conditions remplies.

 Montrer que la suite $(M(a,b)^p)$ converge vers une limite que l'on précisera.

Partie III: Matrice de permutation

On note \mathfrak{S}_n le groupe des permutations de $\left\{1,2,\ldots,n\right\}$. Pour $\sigma\in\mathfrak{S}_n$, on note $M_\sigma=(m_{i,j})\in M_n(\mathbb{C})$ la matrice définie par : $m_{i,j}=\delta_{\sigma(i),j}=\begin{cases} 1 & \text{si } j=\sigma(i) \\ 0 & \text{sinon} \end{cases}$. M_σ est appelée matrice de permutation associée à σ .

- 1. Justifier que les matrices de permutations sont stochastiques.
- 2. Soit $A = (a_{i,j})$ une matrice de $\mathcal{M}_n(\mathbb{C})$ et σ un permutation de \mathfrak{S}_n .

 Donner le terme général des matrices $B = M_\sigma A$ et $C = A^t M_\sigma$ en fonction du terme général $a_{i,j}$ de la matrice A. Comment interpréter les résultats obtenus en termes de permutation de lignes ou colonnes.
- 3. Soit $\sigma, \sigma' \in \mathfrak{S}_n$. Exprimer le produit $M_{\sigma}.M_{\sigma'}$ comme matrice associée à une permutation de \mathfrak{S}_n . En déduire que M_{σ} est inversible et exprimer son inverse.
- 4. Soit $\sigma \in \mathfrak{S}_n$. A quelle condition la suite (M_{σ}^p) converge-t-elle?

Partie IV : Etude générale

Soit $A=(a_{i,j})\in\mathcal{S}_n$. On s'intéresse ici à l'éventuelle convergence de la suite $(A^p)_{p\in\mathbb{N}}$. Pour tout $p\in\mathbb{N}$, on note $a_{i,j}^{(p)}$ le coefficient d'indice (i,j) de la matrice A^p .

- 1. Montrer que si la suite $(A^p)_{p\in\mathbb{N}}$ converge vers une matrice B alors $B\in\mathcal{S}_n$ et $B^2=B$.
- 2. On suppose ici que pour tous $i, j \in \{1, 2, ..., n\}$, $a_{i, j} > 0$. On pose $\varepsilon = \min \left\{a_{i, j} / i, j \in \{1, 2, ..., n\}\right\}$. Pour tout p dans $\mathbb N$ et tout j dans $\{1, 2, ..., n\}$, on note $\alpha_i^{(p)} = \min \left\{a_{i, j}^{(p)} / i \in \{1, 2, ..., n\}\right\}, \ \beta_j^{(p)} = \max \left\{a_{i, j}^{(p)} / i \in \{1, 2, ..., n\}\right\} \text{ et } \delta_j^{(p)} = \beta_j^{(p)} \alpha_j^{(p)}.$
- $\begin{array}{ll} \text{2.a} & \text{Montrer que pour tout } p \text{ dans } \mathbb{N} \text{ et tout } j \text{ dans } \left\{1,2,\ldots,n\right\}, \text{ on a}: \\ & \alpha_j^{(p)} \leq \alpha_j^{(p+1)} \leq \beta_j^{(p+1)} \leq \beta_j^{(p)} \text{ et } \delta_j^{(p+1)} \leq (1-2\varepsilon)\delta_j^{(p)}. \end{array}$
- 2.b En déduire que $(A^p)_{p \in \mathbb{N}}$ converge vers une certaine matrice B.
- 2.c Quelle particularité ont les lignes de B?

Les matrices stochastiques interviennent en calcul de probabilité de la manière suivante :

Considérons un système à n états numérotés de 1 à n et notons $a_{i,j}$ la probabilité pour ce système de passer de l'état i à l'état j au bout d'un laps de temps donné.

La matrice $A = (a_{i,j})$ est alors une matrice stochastique, la condition $\sum_{i=1}^{n} a_{i,j} = 1$ signifiant que le système doit

atteindre à partir de l'état i l'un des états $1,2,\ldots,n$ donnés. Pour $p\in\mathbb{N}$, les coefficients de la matrices A^p permettent de voir les probabilités qui permettent de passe d'un état à un autre au bout de p laps de temps. La limite de (A^p) , lorsqu'elle existe, donne une information sur le processus limite. Dans ce contexte, l'égalité des lignes de B signifie que l'état limite est indépendant de l'état initial.

Correction

Préliminaire

- 1. AX est une matrice colonne dont le coefficient de la ligne d'indice i est $\sum_{i=1}^{n} a_{i,j}$.
- 2. Soit $A = (a_{i,j}) \in \mathcal{S}_n$ et $B = (b_{i,j}) \in \mathcal{S}_n$. On étudie $AB = (c_{i,j}) \in \mathcal{S}_n$ avec $c_{i,j} = \sum_{k=1}^n a_{i,k} b_{k,j}$.
 - (1) $\forall i, j, k \in \{1, ..., n\}$, on a $a_{i,k} \ge 0$ et $b_{k,j} \ge 0$ donc $c_{i,j} \ge 0$.
 - (2) ABX = AX = X donc $\forall i \in \{1,...,n\}, \sum_{j=1}^{n} a_{i,j} = 1$.

Partie I

- 1. Si a=b=1 alors A=I et pour tout $p\in\mathbb{N}$, $A^p=I$.

 Si a=b=0 alors $A=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ et pour tout $p\in\mathbb{N}$, $A^p=\begin{bmatrix} I & \text{si } p \text{ est pair } \\ A & \text{sinon} \end{bmatrix}$.
- 2.a $P(A) = (A-I)(A-(a+b-1)I) = \begin{pmatrix} a-1 & 1-a \\ 1-b & b-1 \end{pmatrix} \begin{pmatrix} 1-b & 1-a \\ 1-b & 1-a \end{pmatrix} = O$.
- 2.b Cette division euclidienne s'écrit : $X^p = PQ + R$ avec $\deg R < 2$ ce qui permet d'écrire $R = \alpha X + \beta$. En évaluant cette relation de division euclidienne en 1 et a+b-1 qui sont racines de P on obtient :

$$\begin{cases} 1 = \alpha + \beta \\ (a+b-1)^p = \alpha(a+b-1) + \beta \end{cases} \text{ d'où } \begin{cases} \alpha = \frac{(a+b-1)^p - 1}{a+b-2} \\ \beta = \frac{(a+b-1) - (a+b-1)^p}{a+b-2} \end{cases}.$$

2.c Par la relation de division euclidienne : $A^p = P(A)Q(A) + R(A)$ donc

$$A^{p} = \alpha A + \beta I = \frac{1}{a+b-2} \begin{pmatrix} (a-1)(a+b-1)^{p} + b - 1 & (1-a)((a+b-1)^{p} - 1) \\ (1-b)((a+b-1)^{p} - 1) & (b-1)(a+b-1)^{p} + a - 1 \end{pmatrix}.$$

2.d On a $a,b \in]0,1[$ donc 0 < a+b < 2 puis |a-b-1| < 1 et donc $(a+b-1)^p \xrightarrow[p \to +\infty]{} 0$.

Par suite
$$(A^p)$$
 converge vers :
$$\frac{1}{a+b-2} \begin{pmatrix} b-1 & a-1 \\ b-1 & a-1 \end{pmatrix}.$$

Partie II

1. Introduisons $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. On a E = Vect(I, J) avec I, J linéairement

indépendantes donc E est un sous-espace vectoriel de dimension 2 de $M_3(\mathbb{C})$ donc (I,J) est base.

2.a Clairement $U, V \in E$ et (U, V) libre donc (U, V) est base de E car dim E = 2.

$$M(a,b) = \lambda U + \mu V \Leftrightarrow \begin{cases} \lambda + 2\mu = 3a \\ \lambda - \mu = 3b \end{cases} \Leftrightarrow \begin{cases} \lambda = a + 2b \\ \mu = a - b \end{cases}.$$

Les composantes de M(a,b) dans (U,V) sont a+2b et a-b.

- 2.b $U^2 = U$, $V^2 = I 2U + U^2 = V$, $UV = U U^2 = VU = O$.
- 2.c Puisque U et V commutent : $(\alpha U + \beta V)^p = \sum_{k=0}^n \binom{n}{k} (\alpha U)^k (\beta V)^{n-k}$.

Or pour
$$k \in \{1,...,n-1\}$$
, on a $(\alpha U)^k (\beta V)^{n-k} = 0$ car $UV = 0$

donc
$$(\alpha U + \beta V)^p = \alpha^p U^p + \beta V^p = \alpha^p U + \beta^p V$$
.

$$M(a,b)^p = (a+2b)^p U + (a-b)^p V$$
.

3. $M(a,b) \in S_3$ ssi $a,b \ge 0$ et a+2b=1 (ce qui implique $a \in [0,1]$ et $b \in [0,1/2]$)

Si b = 0 alors M(a,b) = I et donc $(M(a,b)^p)$ converge vers I.

Si b > 0 alors

d'une part
$$(a+2b)^p = 1 \xrightarrow{n \to +\infty} 1$$

et d'autre part
$$-1 < a - \frac{1}{2} < a - b < a \le 1$$
 donc $(a - b)^p \xrightarrow[p \to +\infty]{} 0$.

Par suite $(M(a,b)^p)$ converge vers U.

Partie III

$$1. \qquad \text{Soit } \sigma \in \mathfrak{S}_n \, . \ \, \forall i,j \in \left\{1,\ldots,n\right\}, \ \, m_{i,j} \geq 0 \ \, \text{et} \ \, \forall i \in \left\{1,\ldots,n\right\}, \\ \sum_{i=1}^n m_{i,j} = \sum_{i=1}^n \delta_{\sigma(i),j} = 1 \ \, \text{donc} \ \, M_\sigma \in \mathcal{S}_n \, .$$

2.
$$B = (b_{i,j}) \text{ avec } b_{i,j} = \sum_{k=1}^{n} \delta_{\sigma(i),k} a_{k,j} = a_{\sigma(i),j}$$
.

B est obtenue en permutant les lignes de A selon σ .

$$C = (c_{i,j}) \text{ avec } c_{i,j} = \sum_{k=1}^{n} a_{i,k} \delta_{k,\sigma(j)} = a_{i,\sigma(j)}.$$

C est obtenue en permutant les colonnes de A selon σ .

3.
$$M_{\sigma}M_{\sigma'}=(a_{i,j}) \ \text{ avec } \ a_{i,j}=\sum_{k=1}^n \delta_{\sigma(i),k}\delta_{\sigma'(k),j}=\delta_{\sigma(i),\sigma'^{-1}(j)}=\delta_{\sigma'\circ\sigma(i),j} \ \text{ donc } \ M_{\sigma}M_{\sigma'}=M_{\sigma'\circ\sigma} \ .$$

$$M_{\sigma}M_{\sigma^{-1}}=M_{\sigma^{-1}}M_{\sigma}=I \ \text{ donc } \ M_{\sigma} \ \text{ est inversible et } \ M_{\sigma^{-1}} \ \text{ est son inverse}.$$

4. Il est clair que (M_{σ}^{p}) converge vers I quand $\sigma = \operatorname{Id}$.

Inversement supposons (M_{σ}^{p}) convergente. $M_{\sigma}^{p} = M_{\sigma^{p}} = (\delta_{\sigma^{p}(i)})$.

La convergence de M_{σ}^{p} implique la convergence des $\delta_{\sigma^{p}(i),i}$.

Or pour que ces derniers convergent, ils doivent être stationnaires.

Ainsi, pour p suffisamment grand, on a pour tout $i, j : \delta_{\sigma^{p+1}(i), i} = \delta_{\sigma^{p}(i), i}$.

On a alors pour tout $i \in \{1,...,n\}$, $\sigma^{p+1}(i) = \sigma^p(i)$ donc $\sigma(i) = i$ car $\sigma^p \in \mathfrak{S}_n$.

Ainsi $\sigma = Id$

Partie IV

1. Par extraction (A^{2p}) converge vers B.

Or
$$A^{2p} = A^p \times A^p$$
 donc par opérations (A^{2p}) converge aussi vers B^2 .

Par unicité de la limite $B = B^2$.

$$2. \text{a} \qquad a_{i,j}^{(p+1)} = \sum_{k=1}^n a_{i,k} a_{k,j}^{(p)} \geq \sum_{k=1}^n a_{i,k} \alpha_j^{(p)} = \alpha_j^{(p)} \text{ car } \sum_{k=1}^n a_{i,k} = 1 \text{ . Par suite } \alpha_j^{(p+1)} \geq \alpha_j^{(p)} \text{ .}$$

$$a_{i,j}^{(p+1)} = \sum_{k=1}^n a_{i,k} a_{k,j}^{(p)} \leq \sum_{k=1}^n a_{i,k} \beta_j^{(p)} = \beta_j^{(p)} \ \text{ et donc } \ \beta_j^{(p+1)} \leq \beta_j^{(p)} \ . \ \text{Enfin il est clair que } \ \alpha_j^{(p+1)} \leq \beta_j^{(p+1)} \ .$$

Peaufinons :

Notons ℓ l'indice tel que $a_{\ell,k}^{(p)} = \beta_i^{(p)}$.

$$a_{i,j}^{(p+1)} = \sum_{k=1}^{n} a_{i,k} a_{k,j}^{(p)} = \sum_{\substack{k=1 \\ k \neq \ell}}^{n} a_{i,k} a_{k,j}^{(p)} + a_{i,\ell} a_{\ell,j}^{(p)} = \sum_{\substack{k=1 \\ k \neq \ell}}^{n} a_{i,k} a_{k,j}^{(p)} + a_{i,\ell} \beta_{j}^{(p)}$$

$$\text{donc } a_{i,j}^{(p+1)} \geq \sum_{\substack{k=1 \\ k \neq \ell}}^n a_{i,k} \alpha_j^{(p)} + a_{i,\ell} \beta_j^{(p)} = \sum_{k=1}^n a_{i,k} \alpha_j^{(p)} + a_{i,\ell} \delta_j^{(p)} \geq \alpha_j^{(p)} + \varepsilon \delta_j^{(p)} \,.$$

Ainsi
$$\alpha_i^{(p+1)} \ge \varepsilon \delta_i^{(p)} + \alpha_i^{(p)}$$
.

Une démarche analogue laissée au soin du lecteur attentif donne $\,\beta_j^{(p+1)} \leq \beta_j^{(p)} - \varepsilon \delta_j^{(p)}$.

 $\text{Cela permet alors de justifier}: \ \delta_j^{(p+1)} \leq \beta_j^{(p)} - \alpha_j^{(p)} - 2\varepsilon \delta_j^{(p)} = (1-2\varepsilon)\delta_j^{(p)} \ .$

- $\text{2.b} \qquad \text{Par récurrence } \ 0 \leq \delta_j^{(p)} \leq (1-2\varepsilon)^p \, \delta_j^{(0)} \ \ \text{donc } \ \delta_j^{(p)} \xrightarrow[p \to +\infty]{} 0 \ .$
 - Les suites $(\alpha_j^{(p)})$ et $(\beta_j^{(p)})$ sont donc adjacentes. Notons ℓ_j leur limite commune.

 $\text{Pour tout } i \in \left\{1, \ldots, n\right\} \text{, on a } \alpha_{j}^{(p)} \leq a_{i,j}^{(p)} \leq \beta_{j}^{(p)} \text{ donc par le th\'eor\`eme des gendarmes } a_{i,j}^{(p)} \xrightarrow[p \to +\infty]{} \ell_{j}.$

Par suite (A^p) converge vers une matrice B dont toutes les lignes sont égales à $\begin{pmatrix} \ell_1 & \cdots & \ell_n \end{pmatrix}$.

2.c Elles sont toutes égales.