

Préparation aux Concours (CNC)

Probabilités Continues

Thème 1 : Lois Usuelles

Exercice 1 La loi gamma à "deux" paramètres.

b et ν sont deux réels strictement positifs. On pose : $\forall t \in]-\infty,0], \ f(t)=0$ et $\forall t \in]0,+\infty[, \ f(t)=\frac{t^{\nu-1}\,e^{-\frac{t}{b}}}{b^{\nu}\Gamma(\nu)}.$

- Q1. Montrer que f est une densité de probabilité.
- Q2. Soit X une variable aléatoire réelle admettant f pour densité. On dit que X suit la **loi gamma** de paramètres b et ν . On écrit $X \hookrightarrow \Gamma(b, \nu)$.
- a) Que dire sit $\nu = 1$ (resp. b = 1)?
- b) Que dire de $\frac{1}{h}X$? Envisager une réciproque.
- Q3. a) Montrer que pour tout k dans \mathbb{N} , X possède un moment d'ordre k et le calculer.
- b) Vérifier que $E(X) = b \nu$ et $V(X) = b^2 \nu$.
- Q4. a) Soient X_1 et X_2 deux variables aléatoires réelles indépendantes sur (Ω, \mathcal{A}, P) qui suivent respectivement une loi gamma de paramètres b et ν_1 , et b et ν_2 .

Montrer que $X_1 + X_2$ suit la loi gamma de paramètres b et $\nu_1 + \nu_2$.

b) Plus généralement $X_1, X_2, ..., X_n$ sont des variables aléatoires réelles mutuellement indépendantes sur (Ω, \mathcal{A}, P) .

Montrer que si $\forall i \in [1, n], X_i \hookrightarrow \Gamma(b, \nu_i)$ alors $X_1 + X_2 + \dots + X_n \hookrightarrow \Gamma(b, \nu_1 + \nu_2 + \dots + \nu_n)$.

c) $X_1, X_2, ..., X_n$ sont des variables aléatoires réelles mutuellement indépendantes sur (Ω, \mathcal{A}, P) suivant la loi exponentielle de paramètre λ .

Montrer que $X_1 + X_2 + \cdots + X_n$ suit la loi gamma de paramètre $\frac{1}{\lambda}$ et n.

Exercice 2 Loi de Pareto

 α et x_0 sont deux réels strictement positifs. On pose : $\forall t \in \mathbb{R}, \ f(t) = \begin{cases} \frac{\alpha x_0^{\alpha}}{t^{\alpha+1}} & \text{si } t \in [x_0, +\infty[\\ 0 & \text{sinon} \end{cases}$.

- Q1. Montrer que f est une densité de probabilité.
- Soit X une variable aléatoire réelle admettant pour densité f. On dit que X suit la loi de Pareto de paramètres α et x_0 . On écrit alors $X \hookrightarrow \mathcal{VP}(\alpha, x_0)$.
- Q2. Donner la fonction de répartition F_X de X.

Q3. a) E(X) existe si et seulement si $\alpha > 1$ et dans ce cas $E(X) = \frac{\alpha}{\alpha - 1} x_0$.

b) V(X) existe si et seulement si $\alpha > 2$ et dans ce cas $V(X) = \frac{\alpha}{(\alpha - 2)(\alpha - 1)^2} x_0^2$.

▶ On ajoute parfois un paramètre C telle que $x_0 + C > 0$ (à la place de $x_0 > 0$).

$$f \ devient: \forall t \in \mathbb{R}, \ f(t) = \left\{ \begin{array}{ll} \frac{\alpha \left(x_0 + C\right)^{\alpha}}{(t + C)^{\alpha + 1}} & si \ t \in [x_0, +\infty[\\ 0 & sinon \end{array} \right..$$

C'est la loi de Pareto à trois paramètres que l'on note $\mathcal{VP}(\alpha, x_0, C)$.

Exercice3 Loi de Cauchy

a est un réel strictement positif. On pose : $\forall t \in \mathbb{R}, \ f(t) = \frac{a}{\pi(a^2 + t^2)}$

Q1. Montrer que f est une densité de probabilité.

Soit X une variable aléatoire réelle admettant pour densité f. On dit que X suit la loi de Cauchy de paramètre a. On écrit alors $X \hookrightarrow \mathcal{C}(a)$.

Q2 Trouver la fonction de répartition F_X de X.

Q3 Montrer que X , n'a pas d'espérance.

On ajoute parfois un paramètre de dispersion x_0 (au paramètre d'échelle a) et f devient : $t \to \frac{a}{\pi(a^2 + (t - x_0)^2)}$.

C'est la loi de Cauchy de paramètres x_0 et a.

Exercice4 Loi Bêta de première espèce.

 α et β sont deux réels strictement positifs.

Q1. Montrer que $B(\alpha, \beta) = \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt$ est une intégrale convergente et strictement positive.

On pose
$$\forall t \in]-\infty,0] \cup [1,+\infty[,\ f_{\alpha,\beta}(t)=0 \quad \text{et} \quad \forall t \in]0,1[,\ f_{\alpha,\beta}(t)=\frac{t^{\alpha-1}(1-t)^{\beta-1}}{B(\alpha,\beta)}\cdot$$

Q2. Montrer que $f_{\alpha,\beta}$ est une densité de probabilité.

Soit X une variable aléatoire réelle admettant pour densité $f_{\alpha,\beta}$. On dit que X suit **la loi de bêta de première** espèce de paramètres α et β . On écrit alors $X \hookrightarrow \mathcal{B}(\alpha,\beta)$.

Q3. a) Montrer que pour tout r dans \mathbb{N} , X possède un moment d'ordre r.

b) Montrer que
$$E(X) = \frac{\alpha}{\alpha + \beta}$$
 et $V(X) = \frac{\alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$.

c) Montrer que
$$\forall r \in \mathbb{N}^*, \ E(X^r) = \prod_{i=0}^{r-1} \frac{\alpha+i}{\alpha+\beta+i}$$
.

Exercice5 Loi de Weibull

 $\alpha \text{ et } \lambda \text{ sont des réels strictement positifs. On pose } \forall x \in \mathbb{R}, \ f(x) = \begin{cases} \alpha \lambda x^{\alpha - 1} e^{-\lambda \ x^{\alpha}} & \text{si } x > 0 \\ 0 & \text{si } x \leqslant 0 \end{cases}.$

Q1. Montrer que f est une densité de probabilité.

Q2. X est une variable aléatoire à densité de densité f. On dit que X suit la loi de Weibull de paramètre α et λ . On écrit $X \hookrightarrow \mathcal{W}(\alpha, \lambda)$.

- a) Trouver F_X . Montrer que X possède une espérance et une variance que l'on exprimera à l'aide de la fonction Γ .
- b) On considère la variable aléatoire $Y = \lambda X^{\alpha}$. Étudier Y.

Exercice6 Approche des lois gamma.

Pour tout réel positif t, le nombre de personnes qui entrent dans un magasin entre les instants 0 et t est une variable aléatoire N_t qui suit une loi de Poisson de paramètre λt .

n est un élément de \mathbb{N}^* . Y_n est la variable aléatoire égale au temps d'attente du $n^{\text{ème}}$ client dans le magasin.

- Q1. Donner la fonction de répartition F_n de Y_n .
- Q2. Montrer que Y_n est une variable aléatoire réelle à densité et en donner une densité.

Éxaminer les cas particuliers $\lambda = 1$ et n = 1.

Exercice7 Géométrique-exponentielle.

 $(X_k)_{k\in\mathbb{N}^*}$ est une suite de variables alétaoires indépendantes sur (Ω, \mathcal{A}, P) qui suivent la même loi exponentielle de paramètre a.

Soit x un réel strictement positif. Trouver la loi de la variable aléatoire N_x égale à $Min\{k \in \mathbb{N}^* \mid X_k > x\}$.

Déterminer $\lim_{x \to +\infty} P(N_x > E(N_x)).$

Exercice8 Poisson-Gamma.

n est un élément de \mathbb{N}^* et λ est un réel positif. X et Y sont deux variables aléatoires sur (Ω, \mathcal{A}, P) .

On suppose que X suit la loi gamma de paramètre n et que Y suit une loi de poisson de paramètre λ .

Démontrer que $P(X > \lambda) = P(Y < n)$.

Exercice9 Poisson-Gamma.

On ouvre un guichet au temps 0. Des clients se présentent successivement à ce guichet aux instants aléatoires T_1, T_2, \ldots

On suppose que les variables aléatoires E_1, E_2, \dots définies sur un espace probabilisé (Ω, \mathcal{A}, P) par : $\begin{cases} E_1 = T_1 \\ E_2 = T_2 - T_1 \\ E_3 = T_3 - T_2 \end{cases}$ sont mutuellement indépendantes et suivent une même loi exponentielle de paramètre X > 0

On note X la variable aléatoire réelle égale au nombre de clients arrivant dans l'intervalle [0,1].

- Q1. Montrer que T_n est une variable aléatoire réelle à densité et en donner une densité (cours).
- Q2. Calculer P[X=0].
- Q3. Pour n dans \mathbb{N}^* , exprimer P(X=n) en fonction de $P(T_{n+1}>1)$ et de $P(T_n>1)$.

En déduire la loi de X ou montrer que X suit une loi de Poisson!! (IPP)

Exercice10

Loi normale. Bienaymé-Tchebychev

x est un réel strictement positif. Montrer que $\int_0^x e^{-\frac{t^2}{2}} dt \geqslant \sqrt{\frac{\pi}{2}} \left(1 - \frac{1}{x^2}\right)$.

Exercice11

 Φ est la fonction de répartition d'une variable aléatoire qui suit la loi normale centrée réduite.

Existence et valeur de $\int_0^{+\infty} (1 - \Phi(t)) dt$.

Exercice12 Utilisation des lois normales pour calculer des intégrales.

a, b et c sont trois réels. On suppose que a est strictement positif.

Existence et calcul de $I = \int_{-\infty}^{+\infty} e^{-(at^2 + bt + c)} dt$.

Exercice13

Moments d'une loi normale centrée réduite.

X est une variable aléatoire qui suit la loi normale centrée réduite.

Montrer que pour tout k dans \mathbb{N} , X possède un moment d'ordre k et le calculer.

Exercice.14 Loi normale.

Q1. a) Soit X une variable aléatoire suivant la loi normale $\mathcal{N}(0,1)$ et φ une densité de X (nous pourrons prendre la densité de X continue sur \mathbb{R}).

Montrer que X admet des moments à tous les ordres. Préciser les moments d'ordre 1, 2 et 3.

Calculer le moment d'ordre 4 en remarquant que $\int_{-\infty}^{+\infty} t^4 \varphi(t) dt = \int_{-\infty}^{+\infty} -t^3 \varphi'(t) dt$, où φ' désigne la dérivée de φ .

b) On suppose maintenant que X suit la loi normale $\mathcal{N}(m, \sigma)$.

En écrivant X sous la forme $X = \sigma X^* + m$, calculer $E(X^2)$, $E(X^4)$, puis $V(X^2)$ en fonction de m et de σ .

Q2. Un point se déplace dans le plan rapporté à un repère orthonormé, en partant de l'origine à l'instant 0.

Si à l'instant t = k - 1, le point se trouve en (u_{k-1}, v_{k-1}) , à l'instant t = k, il se trouvera en $(u_{k-1} + X_k, v_{k-1} + Y_k)$, où X_k et Y_k suivent des lois normales $\mathcal{N}(a, 1)$.

Ainsi, au temps t = 1, il se trouve au point de coordonnées (X_1, Y_1) , au temps t = 2, il se trouve en $(X_1 + X_2, Y_1 + Y_2)$, etc

On suppose les variables $X_1, X_2, \ldots, X_n, \ldots$ et $Y_1, Y_2, \ldots, Y_n, \ldots$ mutuellement indépendantes : les X_i sont indépendantes entre elles, de même que les Y_j et toutes les X_i sont indépendantes de toutes les Y_j .

▶ L'objectif de cette question est l'estimation de a² où a est défini ci-dessus.

Pour tout n entier strictement positif, on pose $A_n = \sum_{k=1}^n X_k$ et $B_n = \sum_{k=1}^n Y_k$. (A_n, B_n) sont donc les coordonnées du point à l'instant n.

- a) Quelle sont les lois de A_n , de B_n , leur espérance et leur variance?
- b) Soit $D_n^2 = A_n^2 + B_n^2$ le carré de la distance du point à l'origine à l'instant n.

Exprimer $E(A_n^2)$ à l'aide de $V(A_n)$ et $E(A_n)$. En déduire $E(D_n^2)$.

Montrer que $U_n = \frac{X_n^2 + Y_n^2}{2n^2} - \frac{1}{n}$ est un estimateur sans biais de a^2 .

c) Exprimer la variance de A_n^2 à l'aide des résultats de la question 1. En déduire celle de U_n . Cet estimateur est-il convergent?

Thème 2 : Thèorème de transfert

a) Les " $\varphi \circ X$ " de base.

Exercice.15 Y = aX + b

Soit X une variable aléatoire réelle à densité sur (Ω, \mathcal{A}, P) de densité f définie sur \mathbb{R} . a est un réel non nul et b un réel

Montrer que Y = aX + b est une variable aléatoire à densité admettant pour densité g définie sur \mathbb{R} par :

$$\forall x \in \mathbb{R}, \ g(x) = \frac{1}{|a|} \ f\left(\frac{x-b}{a}\right).$$

Exercice.16
$$Y = X^2$$

Soit X une variable aléatoire réelle à densité sur (Ω, \mathcal{A}, P) de densité f définie sur \mathbb{R} .

Montrer que $Y = X^2$ est une variable aléatoire à densité admettant pour densité g définie sur \mathbb{R} par :

$$\forall x \in]-\infty, 0], \ g(x) = 0 \quad \text{et} \quad \forall x \in]0, +\infty[, \ g(x) = \frac{1}{2\sqrt{x}} \Big(f(\sqrt{x}) + f(-\sqrt{x}) \Big).$$

Exercice.17 Y = |X|

Soit X une variable aléatoire réelle à densité sur (Ω, \mathcal{A}, P) de densité f définie sur \mathbb{R} .

Montrer que Y = |X| est une variable réelle à densité sur (Ω, \mathcal{A}, P) et en donner une densité.

$$\boxed{ \text{Exercice.18} } \boxed{ \textbf{Y} = \frac{1}{\textbf{X}} }$$

Soit X une variable aléatoire réelle à densité sur (Ω, \mathcal{A}, P) , prenant ses valeurs dans \mathbb{R}^* , de densité f définie sur \mathbb{R} .

Montrer que $Y = \frac{1}{X}$ est une variable aléatoire à densité admettant pour densité g définie sur $\mathbb R$ par :

$$g(0) = 0$$
 et $\forall x \in \mathbb{R} - \{0\}, \ g(x) = \frac{1}{x^2} f(x).$

Exercice.19
$$Y = e^{X}$$

Soit X une variable aléatoire réelle à densité sur (Ω, \mathcal{A}, P) de densité f définie sur \mathbb{R} .

Montrer que $Y = e^X$ est une variable aléatoire à densité admettant pour densité g définie sur \mathbb{R} par :

$$\forall x \in]-\infty,0], \ g(x)=0 \quad \text{et} \quad \forall x \in]0,+\infty[, \ g(x)=\frac{1}{x} \ f(\ln x).$$

Exercice.20
$$Y = \ln X$$

Soit X une variable aléatoire réelle à densité sur (Ω, \mathcal{A}, P) , prenant ses valeurs dans $]0, +\infty[$ (ou presque sûrement dans $]0, +\infty[$), de densité f définie sur \mathbb{R} .

On considère la variable aléatoire $Y = \ln X$.

Montrer que Y est une variable aléatoire à densité admettant pour densité g définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ g(x) = e^x f(e^x)$$

b) $\phi \circ X$ à partir de la loi uniforme.

Exercice.21 À partir de la loi uniforme.

 $X \hookrightarrow \mathcal{U}([-1,1])$ et $Y = e^X$. Montrer que Y est une variable aléatoire à densité et en trouver une densité.

Exercice.22 A partir de la loi uniforme.

 $X \hookrightarrow \mathcal{U}([1,2])$. Étude de $Y = e^{X^2 - 1}$.

Exercice.23 A partir de la loi uniforme.

X est une variable aléatoire à densité sur (Ω, \mathcal{A}, P) qui suit une loi uniforme sur [-1, 1].

- Q1. Donner la fonction de répartition de $Y = X^2 + 1$. Calculer E(Y).
- Q2. Pour tout ω appartenant à Ω , on pose : $Z(\omega) = -\ln \frac{1 + X(\omega)}{2}$ si $X(\omega) \neq -1$ et $Z(\omega) = 0$ si $Z(\omega) = -1$. Étudier $Z(\omega) = 0$ si $Z(\omega) = 0$ si

Exercice.24 À partir de la loi uniforme. Simulation d'une loi exponentielle.

Q1. a) λ est un réel strictement positif. X est une variable aléatoire qui suit une loi uniforme sur [0,1].

On suppose que $Y = -\frac{1}{\lambda} \ln X$ est une variable aléatoire. Que dire de Y? Et pour $Y = -\frac{1}{\lambda} \ln(1-X)$?

b) Envisager une réciproque.

Exercice.25 | À partir de la loi uniforme.

On casse un bâton de longueur 1. Le point de rupture suit la loi uniforme sur [0,1].

Calculer la probabilité que le grand morceau soit au moins 3 fois plus grand que le petit morceau.

Exercice.26 'A partir de la loi uniforme.

Un baton de longueur 1 et d'extrémités A et B est cassé en deux au hasard. La longeur L du morceau d'extrémité A suit une loi uniforme sur [0,1].

- Q1. Étudier la variable aléatoire X égale à la longueur du plus petit morceau et calculer son espérance.
- Q2. Même chose avec la longueur du plus grand morceau.
- Q3. Soit Z la variable aléatoire égale au rapport de la longueur du plus petit morceau à celle du plus grand. Déterminer la loi de Z et son espérance.

Exercice.27 À partir de la loi uniforme.

X est une variable aléatoire sur (Ω, \mathcal{A}, P) qui suit la loi uniforme sur [-2, 2]. Y est une variable aléatoire sur (Ω, \mathcal{A}, P) qui suit la loi de Bernoulli de paramètre p. X et Y sont indépendantes. t est un réel.

Trouver la probabilité pour que $\begin{pmatrix} X & 1 \\ t & Y \end{pmatrix}$ soit diagonalisable.

Exercice.28 A partir de la loi uniforme.

Soit (Ω, \mathcal{A}, P) un espace probabilisé et X une variable aléatoire réelle suivant une loi uniforme sur [0, 2]. Pour tout $\omega \in \Omega$, on considère la matrice

$$M_{\omega} = \begin{pmatrix} 1 & -X(\omega) \\ X(\omega) & -3 \end{pmatrix}$$

Soit Y la variable aléatoire définie par : pour tout ω dans Ω , $Y(\omega)$ est la plus grande des valeurs propres de M_{ω} .

Montrer que Y est une variable aléatoire à densité et en donner une densité.

Exercice.29 À partir de la loi uniforme.

On considère une variable aléatoire X définie sur un espace probabilisé (Ω, \mathcal{A}, P) qui suit la loi uniforme sur]0,1[.

Déterminer toutes les fonctions g continues et strictement monotones de]0,1[sur g(]0,1[) telles que la variable aléatoire Y=g(X) suive la loi exponentielle de paramètre 1.

c) $\phi \circ X$ à partir de la loi exponentielle

Exercice.30 À partir de la loi exponentielle.

X suit la loi exponentielle de paramètre λ sur (Ω, \mathcal{A}, P) .

Donner la loi de $Y = e^X$. Existence et valeur du moment d'ordre k.

Exercice.31 À partir de la loi exponentielle.

X suit la loi exponentielle de paramètre λ sur (Ω, \mathcal{A}, P) . On considère la variable aléatoire réelle $Y = \sqrt{X}$.

Montrer que Y est une variable aléatoire à densité et en trouver une densité. Calculer E(Y).

Exercice.32 À partir de la loi exponentielle.

X est une variable aléatoire de densité f paire et continue sur \mathbb{R} .

On pose $Y = X^2$ et on suppose que : $Y \hookrightarrow \mathcal{E}(\lambda)$. Déterminer f.

Exercice.33 À partir de la loi exponentielle. Piège...

X et Y sont deux variables aléatoires indépendantes sur (Ω, \mathcal{A}, P) .

X suit la loi exponentielle de paramètre λ et Y suit la loi uniforme sur $\{-1,0,1\}$. Z=XY.

Z est-elle une variable aléatoire discrète? à densité?

Thème 3 : Applications en Géomètrie

Exercice.34 Variables aléatoires réelles à densité et géométrie

Un point M se promène au hasard à l'intérieur d'une boule de centre O et de rayon de R.

La probabilité pour que M se trouve dans une portion de la boule est proportionnelle au volume de cette portion.

Étudier la variable aléatoire X égale à la distance de O à M (... $4\pi R^3/3$). Calculer E(X).

Exercice.35 Variables aléatoires réelles à densité et géométrie

 \mathcal{R} est un repère orthonormé d'origine O du plan \mathcal{P} . A et B sont les points de coordonnées (1,1) et (-1,1). On choisit au hasard un point dans le triangle OAB. X (resp. Y) est la variable aléatoire réelle égale à l'abscisse (resp. ordonnée) de ce point. On admet que la probabilité pour que le point obtenu soit dans une partie du triangle est proportionnelle à l'aire de cette partie.

- Q1. Montrer que Y est une variable aléatoire à densité et en trouver une densité. Calculer E(Y).
- Q2. Reprendre le problème avec X.

Exercice.36 Variables aléatoires réelles à densité et géométrie

On munit le plan \mathcal{P} d'un repère orthonormé \mathcal{R} . On tire sur la cible représentée par le carré de sommets O, I, K, J de coordonnées respectives (0,0), (1,0), (1,1), (0,1). On suppose que pour toute partie A de la cible, la probabilité que le point d'impact soit dans A est égale à l'aire de A.

On note X et Y les coordonnées aléatoires du point d'impact.

- Q1. Étudier X et Y.
- Q2. Soit Z la variable aléatoire égale au produit XY. Déterminer $Z(\Omega)$. Pour tout t dans $Z(\Omega)$, que représente graphiquement $\{Z \leq t\}$.

Trouver la loi de Z. Calculer, si possible son espérance et sa variance.

- Q3. Mme chose avec T = Y/X.
- Q4. Étudier U = [T] (partie entière).