

Prépas MP

Matrices et applications linéaires.

$$\textit{Exercice 1} \ . \ \textbf{Soit} \ A = \left(\frac{1}{(i+j-1)!}\right)_{1 \leq i,j \leq n} \in \mathcal{M}_n(\mathbb{R}) \ \textbf{et} \ X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n \ \textbf{tel que} \ AX = 0.$$

Soit $P: \mathbb{R} \longrightarrow \mathbb{R}$ $t \longmapsto \sum_{k=1}^{n} \frac{x_k}{(n+k-1)!} t^{k-1}$

- 1) On pose $f(t) = t^n P(t)$, calculer $f(1), f'(1), \dots, f^{(n-1)}(1)$.
- 2) En déduire que $P(1) = P'(1) = \cdots = P^{(n-1)}(1) = 0$.
- 3) Montrer que P = 0.
- 4) En déduire que A est inversible.

Exercice 2.

Soit $(a_0, a_1, ..., a_n)$ une famille d'éléments de \mathbb{K} deux à deux distincts.

Pour tout $i \in \{0,1,...,n\}$ on pose

$$L_i = \frac{\prod_{0 \le j \le n, j \ne i} (X - a_j)}{\prod_{0 \le j \le n, j \ne i} (a_i - a_j)}.$$

(a) Observer que, pour tout $j \in \{0,1,...,n\}$, on a $L_i(a_j) = \delta_{i,j}$ (où δ_{ij} eşt le symbole de Kronecker (1823-1891) qui est égal à 1 lorsque i=j et 0 sinon)

En déduire que ces polynômes forment une base, qu'on notera C

(b) Montrer que
$$\forall P \in \mathbb{K}_n [X], \ P(X) = \sum_{i=0}^n P(a_i) L_i(X)$$
.

En déduire la matrice de passage de C vers B, où B la base canonique

Exercice 2.

- 1) Soit $X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$, on pose $A = X^t Y$.
 - a) Montrer que rgA = 1.
- 2) Inversement, soit $A \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $\operatorname{rg} A = 1$. Montrer que $\exists X, Y \in \mathcal{M}_{n,1}(\mathbb{R})$ tel que $A = X^t Y$.

Exercise 3. Soit $A \in \mathcal{M}_n(\mathbb{K})$ de coefficients $a_{ij} = (-1)^{n-j} \binom{n-j}{i-1}$, avec la convention

- $\begin{pmatrix} r \\ q \end{pmatrix} = 0 \text{ si } p < q.$
- 1) Déterminer l'endomorphisme u de $\mathbb{K}_{n-1}[X]$ ayant A pour matrice dans la base canonique de $\mathbb{K}_{n-1}[X]$. Indication: commencer d'abord par calculer $u(1), u(X), \dots, u(X^{n-1})$, à partir de
- 2) En déduire A^3 .

Exercice 4.

1) Soit $A = \begin{pmatrix} 2 & 3 & 1 \\ 0 & 1 & 0 \\ -2 & -6 & -1 \end{pmatrix}$, montrer que **A** est la matrice dans la base canonique

de \mathbb{R}^3 d'une projection dont on precisera le noyau et l'image.

la matrice, puis en déduire u(P) pour tout $P \in \mathbb{K}_{n-1}[X]$.

2) Donner la matrice dans la base canonique de \mathbb{R}^3 de la projection p, sur D parallelement à π où

$$D : \begin{cases} x + y + z = 0 \\ x + 2y - z = 0 \end{cases} \text{ et } \pi : x + y - z = 0.$$

Indication: Poser $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, p(X) = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$, utiliser les relation $p(X) \in \text{Im } p = x$

 $D, p(X) - X \in \ker p = \pi$ pour trouver des relation entre x', y', z' et x, y, z puis en déduire la matrice de p

3) Soit P la matrice d'un projecteur sur un espace vectoriel de dimension finie montrer que

$$\mathbf{rg}(P) = \mathbf{tr}(P)$$

Indication: chercher une base où sa matrice s'exprime d'une façon simple.

Exercice 5.

1) Soit
$$n \in \mathbb{N}^*$$
 et $A = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ & & & \ddots & 0 \\ \vdots & & & \ddots & 1 \\ 0 & \dots & & \dots & 0 \end{pmatrix} \in \mathcal{M}_n(\mathbb{R})$, associée à un endomorphisme

f d'un \mathbb{R} - espace vectoriel, E, de dimension n, dans une base $\mathcal{B} = (e_1, \dots, e_n)$.

- a) Calculer $f(e_k)$, pour tout $1 \le k \le n$.
- b) En déduire $f^2(e_k)$, pour tous $1 \le k \le n$, puis la forme de la matrice A^2 .
- c) En déduire $f^p(e_k)$, pour tous $1 \le k, p \le n$, puis la forme de la matrice A^p .
- d) En déduire que $f^n = 0$, puis que $A^n = 0$.
- 2) Inversement soit f un endomorphisme d'un espace vectoriel, E, de dimension n tel que $f^n = 0$ et $f^{n-1} \neq 0$.
 - a) Justifier l'existence d'un $x_0 \in E$ tel que $f^{n-1}(x_0) \neq 0$.
 - b) En déduire que la famille $\mathcal{B} = (f^{n-1}(x_0), \dots, f(x_0), x_0)$ est une base de E.
 - c) Donner $\mathcal{M}_{\mathcal{B}}(f)$.

Exercice 6 . Soit l'application linéaire
$$\phi: \mathbb{R}_n[X] \longrightarrow \mathbb{R}_n[X]$$

 $P(X) \longmapsto P(X+1)$

- 1) Calculer $M_{\mathcal{B}}\left(\phi\right)$ où \mathcal{B} la base canonique de $\mathbb{R}_{n}[X]$.
- 2) Dire comment inverser la matrice :

$$\begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 0 \end{pmatrix} \\ 0 & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \cdots & \begin{pmatrix} n \\ 1 \end{pmatrix} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \begin{pmatrix} n \\ n \end{pmatrix} \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{R})$$

Exercice 7. Concours marocain, 2005 et 2006.

Soit E un \mathbb{R} – espace vectoriel de dimension $n \in \mathbb{N}^*$ et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. Pour tous $i, j \in \{1, ..., n\}$, on définit l'endomorphisme de E, noté $u_{i,j}$ par la relation suivante : $u_{i,j}(e_k) = \delta_{j,k}e_i$

Avec $\delta_{j,k} = 1$ si j = k, appellé symbole de Kroeneker. = 0 si $j \neq k$

On note aussi, $E_{i,j}$ la matrice carrée d'ordre n, dont tous les coefficients sont nuls, sauf celui de la $i^{\text{ème}}$ ligne et $j^{\text{ème}}$ colonne, ègal à 1.

- 1) Montrer que $(u_{i,j})_{1 \le i,j \le n}$ est une base de $\mathcal{L}(E)$.
- 2) Calculer $\mathcal{M}_{\mathcal{B}}(u_{i,j})$, en déduire que $(E_{i,j})_{1 \leq i,j \leq n}$ est une base de $\mathcal{M}_n(\mathbb{K})$
- Soit $i, j, k, l \in \{1, ..., n\}$ fixés, calculer pour tou $p \in \{1, ..., n\}$, $u_{i,j} \circ u_{k,l}(e_p)$, puis en déduire $E_{i,j}E_{k,l}$.
- Exprimer la matrice $A = (a_{i,j})_{1 \le i,j \le n}$, dans la base $(E_{i,j})_{1 \le i,j \le n}$, puis en déduire les produits $AE_{k,l}$ et $E_{k,l}A$.
- 5) Application : Soit $A = (a_{i,j})_{1 \le i,j \le n}$.
 - a) Montrer que: $AM = MA, \ \forall M \in \mathcal{M}_n(\mathbb{K}) \Longrightarrow A = \lambda I_n, \ \mathbf{où} \ \lambda \in \mathbb{K}.$
 - b) Calculer $Tr(AE_{k,l})$. En déduire que : $Tr(AM) = 0, \forall M \in \mathcal{M}_n(\mathbb{K}) \Longrightarrow A = 0.$

Exercice 8. Formes linéaires et trace sur $\mathcal{M}_n(\mathbb{K})$.

1) Soit ϕ une forme linéaire sur $\mathcal{M}_n(\mathbb{K})$. Montrer qu'il existe une et une seule matrice $A \in \mathcal{M}_n(\mathbb{K})$ telle que :

 $\forall X \in \mathcal{M}_n(\mathbb{K}) \quad \phi(X) = \mathbf{Tr}(AX)$

2) On suppose que $\forall X, Y \in \mathcal{M}_n(\mathbb{K})$ $\phi(XY) = \phi(YX)$.

Montrer qu'il existe $\lambda \in \mathbb{K}$ tel que : $\forall X \in \mathcal{M}_n(\mathbb{K}) \quad \phi(X) = \lambda \mathbf{Tr}(X)$

Exercice 9. Commutant d'une matrice diagonale.

Soit $A \in \mathcal{M}_n(\mathbb{K})$ et $\mathcal{C}_A = \{M \in \mathcal{M}_n(\mathbb{K}) \text{ tel que } AM = MA\}$, appelé commutant de A.

- 1) Montrer que \mathcal{C}_A est une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$.
- 2) Soit $A = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ une matrice diagonale dont tous les λ_i sont distincts.
 - a) Chercher \mathcal{C}_A .
 - b) Soit $\phi: \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})$ $M \longmapsto MA - AM$

Montrer que Im ϕ est l'ensemble des matrices à diagonale nulle.

Exercice 10. Matrices d'une permutation.

Soit
$$n \in \mathbb{N}^*$$
, pour tout $\sigma \in \mathcal{S}_n$, on pose $P_{\sigma} = \left(\delta_{i,\sigma(j)}\right)_{1 \leq i,j \leq n}$. Avec $\delta_{i,j} = 1$ si $i = j$, $= 0$ si $i \neq j$

appellé symbole de Kroeneker

- 1) Calculer P_{σ} , pour n = 4, $\sigma = (1 \ 2)$, $\sigma = (1 \ 2 \ 3)$ et $\sigma = (1 \ 2)(3 \ 4)$.
- 2) Montrer que $P_{\sigma}.P_{\sigma'} = P_{\sigma \circ \sigma'}$.
- Calculer P_{id} , en déduire que P_{σ} est inversible et préciser son inverse.

Fin à la prochaine