http://myismail.net

Feuille d'Exercices

مَـوُني مُولاِي اسمَاعِيل

ESPACES PRÉHILBERTIENS RÉELS Partie 4 : Les Type Concours

Hyperplan des espaces euclidiens

Soit E un espace euclidien de dimension n. On rappelle qu'un hyperplan de E est un sous-espace vectoriel de dimension n-1. On note G l'espace vectoriel des applications linéaires de E dans $\mathbb R$ (c'est-à-dire des formes linéaires).

- 1. Soit $a \neq 0_E$. Démontrer que $H_a = \{x \in E; \ \langle a, x \rangle = 0\}$ est un hyperplan de E.
- **2.** Soit H un hyperplan de E. Démontrer qu'il existe $a \in E, \ a \neq 0$, tel que $H = H_a$.
- **3.** Donner une condition nécessaire et suffisante sur $a,b \neq 0_E$ pour que $H_a=H_b$.
- **4.** Pour $a \in E$, on note $\varphi_a(x) = \langle a, x \rangle$, de sorte que $\varphi_a \in G$. Donner une condition nécessaire et suffisante pour que $\varphi_a = \varphi_b$.
- **5.** En déduire que l'application de E dans G définie par $a\mapsto \varphi_a$ est un isomorphisme d'espaces vectoriels.
- **6.** Application : démontrer qu'il existe un unique polynôme $H_n \in \mathbb{R}_n[X]$ tel que, pour tout $P \in \mathbb{R}_n[X]$, on a $\int_0^1 H_n(t) P(t) dt = 5P''(7) 3P'(2) + 2P(\pi)$.

Similitudes

Soit E un espace euclidien, $f \in \mathcal{L}(E)$ et $\lambda > 0$. On dit que f est une similitude de rapport λ si pour tout $x \in E$, $\|f(x)\| = \lambda \|x\|$.

- 1. Question préliminaire : soient $u,v\in E$ tels que $u+v\perp u-v$. Démontrer que $\|u\|=\|v\|$.
- **2.** Démontrer que f est une similitude de rapport λ si et seulement si, pour tous $x,y\in E, \langle f(x),f(y)\rangle=\lambda^2\langle x,y\rangle.$
- **3.** On souhaite prouver que f est une similitude si et seulement si f est non-nulle et conserve l'orthogonalité : pour tout couple $(x,y) \in E$, si $x \perp y$, alors $f(x) \perp f(y)$.
 - **3.1.** Prouver le sens direct.
 - **3.2.** Réciproquement, on suppose que f est non-nulle et préserve l'orthogonalité. Soit (e_1, \ldots, e_n) une base orthonormale de E. Démontrer que, pour tout couple $(i,j), \|f(e_i)\| = \|f(e_i)\|$.
 - **3.3.** Conclure.

Méthode des moindres carrés

Soit n et p deux entiers naturels avec $p \leq n$. On munit \mathbb{R}^n du produit scalaire canonique et on identifie \mathbb{R}^n avec $\mathcal{M}_{n,1}(\mathbb{R})$. On considère une matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$ de rang p et $B \in \mathcal{M}_{n,1}(\mathbb{R})$.

1. Démontrer qu'il existe une unique matrice X_0 de $\mathcal{M}_{p,1}(\mathbb{R})$ telle que

$$\|AX_0-B\|=\inf\{\|AX-B\|;\ X\in \mathcal{M}_{p,1}(\mathbb{R})\}.$$

- **2.** Montrer que X_0 est l'unique solution de $A^TAX = A^TB$.
- 3. Application : déterminer

$$\inf\{(x+y-1)^2+(x-y)^2+(2x+y+2)^2;\;(x,y)\in\mathbb{R}^2\}.$$

Exo **4**

Déterminants de Gram

Soit E un espace préhilbertien. Pour x_1, \ldots, x_p des vecteurs de E, on appelle matrice de Gram la matrice de $\mathcal{M}_p(\mathbb{R})$ définie par $(\langle x_i, x_j \rangle)_{i,j}$. On appelle déterminant de Gram des vecteurs x_1, \ldots, x_p , et on note $G(x_1, \ldots, x_p)$, le déterminant de cette matrice.

- 1. Démontrer que (x_1,\ldots,x_p) est une famille libre si et seulement si $G(x_1,\ldots,x_p)\neq 0$.
- **2.** On suppose désormais que (x_1, \ldots, x_p) est une famille libre, et on note $E = \operatorname{vect}(x_1, \ldots, x_p)$. Soit également $x_i \in E$. Démontrer que

 $F=\mathrm{vect}(x_1,\ldots,x_p)$. Soit également $x\in E$. Démontrer que

$$d(x,F)^2=rac{G(x,x_1,\ldots,x_p)}{G(x_1,\ldots,x_p)}.$$

1) Soient E et F deux espaces préhilbertiens réels, et $f: E \to F$ une application telle que

$$f(0) = 0$$
 et $\forall (x,y) \in E^2$, $||f(x) - f(y)|| = ||x - y||$.

Montrer que f est linéaire.

2) Soit E un espace préhilbertien réel et $f,g: E \to E$ deux applications telles que :

$$\forall (x,y) \in E^2, \langle x | f(y) \rangle = \langle g(x) | y \rangle.$$

Montrer que f et g sont linéaires.

Soit a un vecteur unitaire d'un espace vectoriel euclidien E. Pour tout $\alpha \in \mathbb{R}$, on considère l'endomorphisme :

$$f_{\alpha}: x \mapsto x + \alpha \langle a | x \rangle a$$
.

- a) Préciser la composée $f_{\alpha} \circ f_{\beta}$. Quelles sont les f_{α} bijectives?
- b) Déterminer les éléments propres de f_{α} .

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Comparer d'une part les espaces : Ker A et Ker $(A^{\top}A)$ et d'autre part les espaces : Im A et Im (AA^{\top}) .

. Établir $\operatorname{rg}(^t AA) = \operatorname{rg} A$.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant :

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \|AX\| \leqslant \|X\|$$

où $\|.\|$ désigne la norme euclidienne usuelle sur $\mathcal{M}_{n,1}(\mathbb{R})$.

a) Établir:

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ \left\| A^{\top} X \right\| \leqslant \|X\|.$$

- **b)** Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. Montrer que si AX = X alors $A^{\top}X = X$.
- c) Établir :

$$\mathcal{M}_{n,1}(\mathbb{R}) = \operatorname{Ker}(A - I_n) \oplus \operatorname{Im}(A - I_n).$$

On munit l'espace $E = \mathcal{C}([0;1],\mathbb{R})$ du produit scalaire $\langle f,g \rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x$.

Pour $f \in E$, on note F la primitive de f qui s'annule en $0 \quad \forall x \in [0;1], F(x) = \int_0^x f(t) dt$ et on considère l'endomorphisme v de E déterminé par v(f) = F.

(a) Déterminer un endomorphisme v^* vérifiant

$$\forall (f,g) \in E^2, \langle v(f), g \rangle = \langle f, v^*(g) \rangle.$$

(b) Déterminer les valeurs propres de l'endomorphisme $v^* \circ v$.

E désigne un espace euclidien de dimension n.

Soit $f: E \to E$ une application non nécéssairement linéaire.

- 1) On suppose que f conserve le produit scalaire. Démontrer que f est linéaire.
- 2) On suppose que f conserve les distances. Démontrer que $f=f(0_E)+g$, avec $g\in\mathcal{O}(E)$.

Soit $\vec{v} \in E \setminus \{\vec{0}\}$ et $\lambda \in \mathbb{R}$. On pose pour $\vec{x} \in E : f(\vec{x}) = \vec{x} + \lambda(\vec{x} \mid \vec{v})\vec{v}$. Déterminer λ pour que $f \in \mathcal{O}(E)$. Reconnaître alors f.

Quotients de Rayleigh

Soit $f \in \mathcal{L}(E)$ auto-adjoint, on se propose d'étudier les extremum du quotient de Rayleigh $R_f(x) = \frac{(f(\vec{x}) \mid \vec{x})}{\|\vec{x}\|}$ où $x \neq 0_E$. Soit $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ les valeurs propres de f.

- 1) Montrer que : $\forall \vec{x} \in E, \ \lambda_1 ||\vec{x}||^2 \le (f(\vec{x}) ||\vec{x}|) \le \lambda_n ||\vec{x}||^2$.
- 2) Montrer que si l'une de ces deux ingalités est une égalité pour un vecteur $\vec{x} \neq \vec{0}$, alors \vec{x} est vecteur propre de f.
- 3) Soit $(\vec{e}_1, \dots, \vec{e}_n)$ une base orthonormée de E telle que pour tout $i: (f(\vec{e}_i) \mid \vec{e}_i) = \lambda_i$. Montrer que : $\forall i, f(\vec{e}_i) = \lambda_i \vec{e}_i$.
- 4) En déduire que le quotient de Rayleigh de f atteint ses extremums, préciser ces extremums et en quels vecteurs ils sont atteints.

Théorème de Courant-Fisher

Soit E un espace vectoriel euclidien.

- 1) Soit $v \in S(E)$, (i.e : auto-adjoint) tel que $(\overrightarrow{v(x)}|\overrightarrow{x}) = 0$ pour tout x. Montrer que v = 0.
- 2) Soient $u_1, \ldots, u_p \in S(E)$. On suppose que $rg(u_1) + \cdots + rg(u_p) = n$, et que $\forall x \in E, \left(\overrightarrow{u_1(x)}|\overrightarrow{x}\right) + \cdots + \left(\overrightarrow{u_p(x)}|\overrightarrow{x}\right) = (\overrightarrow{x}|\overrightarrow{x})$.
 - a) Montrer que $u_1 + \cdots + u_p = Id_E$.
 - b) Montrer que $E = Im(u_1) \oplus \cdots \oplus Im(u_p)$.
 - c) Montrer que pour tout i, u_i est la projection orthogonale sur $Im(u_i)$.

Reconnaître les endomorphismes de \mathbb{R}^3 définis par les expressions analytiques suivantes dans la base canonique :

1)
$$\begin{cases} 3x' = 2x + 2y + z \\ 3y' = -2x + y + 2z \\ 3z' = x - 2y + 2z \end{cases}$$

Réponse : rotation autour de (1,0,1) d'angle $-\arccos(1/3)$.

2)
$$\begin{cases} 9x' = 8x + y - 4z \\ 9y' = -4x + 4y - 7z \\ 9z' = x + 8y + 4z \end{cases}$$

Réponse : rotation autour de (-3,1,1) d'angle $-\arccos(7/18)$.

3)
$$\begin{cases} 3x' = -2x + 2y - z \\ 3y' = 2x + y - 2z \\ 3z' = -x - 2y - 2z \end{cases}$$

Réponse : demi-tour autour de (-1, -2, 1).

4)
$$\begin{cases} 4x' = -2x - y\sqrt{6} + z\sqrt{6} \\ 4y' = x\sqrt{6} + y + 3z \\ 4z' = -x\sqrt{6} + 3y + z \end{cases}$$

Réponse : rotation autour de (0,1,1) d'angle $2\pi/3$.

5)
$$\begin{cases} x' = \frac{x}{\sqrt{3}} + \frac{y}{\sqrt{2}} - \frac{z}{\sqrt{6}} \\ y' = \frac{x}{\sqrt{3}} + \frac{2z}{\sqrt{6}} \\ z' = \frac{x}{\sqrt{3}} - \frac{y}{\sqrt{2}} - \frac{z}{\sqrt{6}} \end{cases}$$

 $\textbf{R\'eponse: rotation autour de } (-2-\sqrt{3},1+\sqrt{2},\sqrt{2}-\sqrt{3}) \textbf{ d'angle}\arccos(\frac{\sqrt{6}-\sqrt{2}+1}{2\sqrt{6}}).$

. Endomorphismes normaux.

Soit E un espace vectoriel hermitien. Un endomorphisme $u \in \mathcal{L}(E)$ est dit normal si u et u^* commutent.

1) Soit u normal, montrer que si F est un sous-espace propre de u alors F^{\perp} est stable par u.

En déduire que \boldsymbol{u} est diagonalisable dans base orthonormale.

La réciproque est-elle vraie?

- 2) Soit $u \in \mathcal{L}(E)$. Montrer l'quivalence entre les propriétés suivantes :
 - (1) u est normal.
 - (2) $\forall x \in E, ||u(x)|| = ||u^*(x)||$.
 - (3) Tout sous-espace vectoriel stable par u est stable par u^* .
 - (4) Si un sous-espace vectoriel F est stable par u alors F^{\perp} est stable par u.
 - (5) Il existe $P \in \mathbb{C}[X]$ tel que $u^* = P(u)$.
- 3) Soit $f \in \mathcal{L}(E)$ tel que $f \circ f^* = f^* \circ f$ et $f^2 = -\mathrm{id}$. Montrer que f est orthogonal.
- 4) Soit $A \in \mathcal{M}_n(\mathbb{C})$ de valeurs propres $\lambda_1, \ldots, \lambda_n$. Montrer que

$$AA^* = A^*A \iff \mathbf{tr}(AA^*) = |\lambda_1|^2 + \dots + |\lambda_n|^2.$$

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que A est symétrique définie positive si et seulement s'il existe $B \in GL_n(\mathbb{R})$ telle que $A = {}^tBB$.