

Devoir Maison

My Ismail Mamouni

http://myismail.net

مَـوُنِي مُولَاِي اسْمَاعِيل

Intégrales à Paramètre

CNC 2003

Définitions et notations

On travaille dans $\mathbb{C}^{\mathbb{R}}$, qui est l'espace vectoriel de toutes les fonctions de \mathbb{R} dans \mathbb{C} ; on notera aussi $\mathcal{C}^0(\mathbb{R})$ (resp. $\mathcal{C}^p(\mathbb{R})$, $\mathcal{C}^\infty(\mathbb{R})$) le sous-espace vectoriel des fonctions continues (resp. de classes \mathcal{C}^p , \mathcal{C}^∞) à valeurs complexes. Pour toute fonction $f \in \mathbb{C}^{\mathbb{R}}$ et tout réel x, on pose

$$\hat{f}(x) = \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt,$$

lorsque cette quantité a un sens.

Quand elle est définie, La fonction \hat{f} s'appelle la transformée de FOURIER de f.

I. ÉTUDE D'UN EXEMPLE

- 1. Soient x et α deux réels strictement positifs.
 - (a) Justifier l'intégrabilité de la fonction $t\mapsto \frac{1-e^{-t}}{t}$ sur l'intervalle $]0,\alpha].$
 - (b) Montrer que la fonction $t\mapsto \frac{e^{-t}}{t}$ est intégrable sur l'intervalle $[x,+\infty[$.
- 2. Dans la suite, φ désigne la fonction définie sur \mathbb{R}_+^* par $\varphi(x) = \int_x^{+\infty} \frac{e^{-t}}{t} dt$.
 - (a) Montrer que, pour tout réel strictement positif x, $0 < \varphi(x) < \frac{e^{-x}}{x}$.
 - (b) Justifier que φ est dérivable sur \mathbb{R}_+^* et donner l'expression de φ' .
 - (c) Montrer que, lorsque x tend vers 0^+ , $\varphi(x) + \ln x$ tend vers

$$C = \varphi(1) - \int_0^1 \frac{1 - e^{-t}}{t} dt.$$

(on pourra exprimer $\ln x$ sous forme d'une intégrale.)

(d) Montrer que, pour tout x > 0,

$$\varphi(x) + \ln x = C + \int_0^x \frac{1 - e^{-t}}{t} dt,$$

et en déduire que

$$\varphi(x) + \ln x = C + \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} \frac{x^k}{k!}.$$

3. Soit ψ la fonction définie sur \mathbb{R}^* par

$$\psi(x) = \frac{1}{2} \varphi(|x|).$$

- (a) Montrer que ψ est intégrable sur les deux intervalles $]-\infty,0[$ et $]0,+\infty[$.
- (b) Justifier que, pour tout $x \in \mathbb{R}$, $\widehat{\psi}(x)$ a un sens et que

$$\widehat{\psi}(x) = \int_0^{+\infty} \varphi(t) \cos(xt) \, dt.$$

- (c) Montrer que $\widehat{\psi}$ est de classe \mathcal{C}^{∞} sur \mathbb{R} et exprimer ses dérivées successives sous forme d'intégrales.
- (d) Montrer que, pour tout réel non nul x, on a

$$\widehat{\psi}(x) = \frac{1}{x} \int_{0}^{+\infty} \frac{e^{-t}}{t} \sin(xt) dt,$$

et calculer $\widehat{\psi}(0)$.

- 4. (a) Montrer que la fonction $\Phi: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{t} \sin(xt) dt$ est dérivable sur $]0, +\infty[$ et calculer $\Phi'(x)$, pour tout x > 0, puis l'exprimer sans utiliser le signe intégrale.
 - (b) En déduire soigneusement que pour tout réel non nul x,

$$\widehat{\psi}(x) = \frac{\arctan x}{r}.$$

II. OUELOUES PROPRIÉTÉS DE LA TRANSFORMÉE DE FOURIER D'UNE FONCTION

1. Transformée de Fourier d'une fonction intégrable

- (a) Soit f une fonction continue par morceaux et intégrable sur \mathbb{R} ; montrer que pour tout réel x, $\hat{f}(x)$ est bien définie et que la fonction \hat{f} est bornée.
- (b) Si en plus f est continue, montrer que \hat{f} est aussi continue.

2. Transformations

- (a) Montrer que l'application $F: \varphi \mapsto \hat{\varphi}$, définie sur l'espace vectoriel des fonctions complexes continues par morceaux et intégrables sur \mathbb{R} , à valeur dans $\mathbb{C}^{\mathbb{R}}$, est linéaire. Dans la suite de cette question, f est une fonction continue par morceaux et intégrable sur \mathbb{R} .
- (b) Vérifier que pour tout réel a, les fonctions $f_a: t\mapsto f(t-a)$ et $_af: t\mapsto f(at)$ possèdent des transformées de Fourier et montrer que

$$\forall x \in \mathbb{R}, \quad \widehat{f}_a(x) = e^{-iax}\widehat{f}(x) \quad \text{et} \quad \widehat{af}(x) = \frac{1}{|a|}\widehat{f}(\frac{x}{a}) \ (a \neq 0).$$

- (c) Exprimer de même la transformée de Fourier de l'application $t\mapsto f(t)e^{iat}$ en fonction de celle de f.
- (d) Si f est paire (resp. impaire), donner une expression de sa transformeé de Fourier sous forme d'une intégrale sur $[0, +\infty[$.

(e) Que peut-on alors dire de la tarnsformée de Fourier d'une fonction réelle et paire (resp. impaire).

3. Dérivation

On considère un élément f de $\mathcal{C}^1(\mathbb{R})$; on suppose que f et f' sont intégrables sur \mathbb{R} .

- (a) Montrer que f tend vers 0 en $\pm \infty$.
- (b) Montrer alors que

$$\forall x \in \mathbb{R}, \quad \widehat{f}'(x) = ix\widehat{f}(x),$$

puis en déduire que \hat{f} tend vers 0 en $\pm \infty$.

(c) On suppose de plus que l'application $g: t\mapsto tf(t)$ est intégrable sur $\mathbb R$; montrer que $\hat f$ est de classe $\mathcal C^1$ sur $\mathbb R$ et que

$$\forall x \in \mathbb{R}, \quad (\hat{f})'(x) = -i\hat{g}(x).$$

III. UNE FORMULE D'INVERSION

A- Un autre exemple

Dans cette section, h désigne la fonction $t\mapsto e^{-t^2}$; on admet que $\int_{-\infty}^{+\infty}h(t)\;dt=\sqrt{\pi}.$

1. Vérifier que \hat{h} est bien définie, dérivable sur \mathbb{R} et qu'elle satisfait l'équation différentielle

$$y' + \frac{x}{2} y = 0. (1)$$

- 2. Résoudre l'équation différentielle (1) et donner l'expression de \hat{h} .
- 3. Donner alors l'expression de la transformée de Fourier de la fonction $t\mapsto e^{-\varepsilon t^2},\ \varepsilon>0.$

B- Application à la formule d'inversion

Dans cette section, f désigne une fonction continue, bornée et intégrable sur \mathbb{R} telle que \hat{f} soit aussi intégrable sur \mathbb{R} . Soit $(\varepsilon_n)_n$ une suite de réels strictement positifs tendant vers 0.

1. (a) Soit $v \in \mathcal{C}^0(\mathbb{R})$ une fonction intégrable sur \mathbb{R} . En utilisant le théorème de la convergence dominée, montrer que

$$\lim_{n \to +\infty} \int_{-\infty}^{+\infty} v(y) e^{-\varepsilon_n y^2} dy = \int_{-\infty}^{+\infty} v(y) dy.$$

(b) Montrer de même que si $w \in \mathcal{C}^0(\mathbb{R})$ est une fonction bornée alors pour tout $x \in \mathbb{R}$,

$$\lim_{n \to +\infty} \int_{-\infty}^{+\infty} w(x + \varepsilon_n y) e^{-y^2} dy = w(x) \sqrt{\pi}.$$

2. Montrer que, pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$,

$$\int_{-\infty}^{+\infty} f(t) \left(\int_{-\infty}^{+\infty} e^{-iy(t-x)-\varepsilon_n y^2} dy \right) dt = 2\sqrt{\pi} \int_{-\infty}^{+\infty} f(x+2\sqrt{\varepsilon_n} s) e^{-s^2} ds.$$

- 3. Soit *x* un nombre réel.
 - (a) Justifier que, pour tout couple (p,q) d'entiers naturels non nuls et tout $\varepsilon > 0$,

$$\int_{-p}^{p} e^{ixy-\varepsilon y^2} \left(\int_{-q}^{q} f(t)e^{-iyt} dt \right) dy = \int_{-q}^{q} f(t) \left(\int_{-p}^{p} e^{-iy(t-x)-\varepsilon y^2} dy \right) dt.$$

(b) Montrer que, pour tout $\varepsilon > 0$,

$$\lim_{q\to +\infty} \int_{-\infty}^{+\infty} e^{ixy-\varepsilon y^2} \left(\int_{-q}^q f(t) e^{-iyt} \ dt \right) \ dy = \int_{-\infty}^{+\infty} e^{ixy-\varepsilon y^2} \left(\int_{-\infty}^{+\infty} f(t) e^{-iyt} \ dt \right) \ dy.$$

(c) Montrer que, pour tout entier naturel non nul q et tout $\varepsilon > 0$,

$$\lim_{p\to +\infty} \int_{-q}^q f(t) \left(\int_{-p}^p e^{-iy(t-x)-\mathcal{E}y^2} \ dy \right) \ dt = \int_{-q}^q f(t) \left(\int_{-\infty}^{+\infty} e^{-iy(t-x)-\mathcal{E}y^2} \ dy \right) \ dt.$$

(d) En déduire que, pour tout $\varepsilon > 0$,

$$\int_{-\infty}^{+\infty} f(t) \left(\int_{-\infty}^{+\infty} e^{-iy(t-x)-\varepsilon y^2} dy \right) dt = \int_{-\infty}^{+\infty} e^{ixy-\varepsilon y^2} \hat{f}(y) dy.$$

4. Montrer alors que, pour tout $x \in \mathbb{R}$,

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ixy} \hat{f}(y) \ dy.$$

FIN DE L'ÉPREUVE

Concours marocain: Corrigé 2003 Maths 1, MP

Mr Mamouni

I.ETUDE D'UN EXEMPLE

- 1) a) On a : $\lim_{t\to 0^+} \frac{1-e^{-t}}{t} = 1$, donc la fonction est prolongeable par continuité sur l'intervalle $[0,\alpha]$ et par suite intégrable sur l'intervalle $[0,\alpha]$
 - b) On a : $\lim_{t\to +\infty} t^2 \frac{e^{-t}}{t} = \lim_{t\to +\infty} t e^{-t} = 0$, donc $t\mapsto \frac{e^{-t}}{t}$ est négligeable devant $t\mapsto \frac{1}{t^2}$ en $+\infty$ or $t\mapsto \frac{1}{t^2}$ est intégrable sur l'intervalle $[x,+\infty[$, donc $t\mapsto \frac{e^{-t}}{t}$ l'est aussi .
- 2) Dans la suite, φ désigne la fonction définie sur \mathbb{R}_+^* par $\varphi(x) = \int_x^{+\infty} \frac{e^{-t}}{t} dt$
 - a) On a: $\frac{e^{-t}}{t} > 0$ $\forall t \in [x, +\infty[$, donc $\varphi(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt > 0$, d'autre part: $\frac{e^{-t}}{t} < \frac{e^{-t}}{x} \quad \forall t \in]x, +\infty[$, donc $\varphi(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt < \varphi(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = \frac{e^{-t}}{x}$, donc on a montré que , pour tout réel strictement positif x on a: $0 < \varphi(x) < \frac{e^{-x}}{x}$.
 - b) $\forall x \in \mathbb{R}_+^*, \varphi(x) = \int_1^{+\infty} \frac{e^{-t}}{t} dt \int_1^x \frac{e^{-t}}{t} dt$ est dérivable comme différence d'une constante, $\int_1^{+\infty} \frac{e^{-t}}{t} dt$ et d'une primitive $\int_1^x \frac{e^{-t}}{t} dt$ de $\frac{e^{-x}}{x}$, avec $\forall x \in \mathbb{R}_+^*, \varphi'(x) = \frac{e^{-x}}{x}$.
 - c) $\varphi(x) + \ln x = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt + \int_{x}^{+\infty} \frac{1}{t} dt = \int_{1}^{+\infty} \frac{e^{-t}}{t} dt \int_{x}^{1} \frac{1 e^{-t}}{t} dt$

tend vers $C = \varphi(1) - \int_0^1 \frac{1 - e^{-t}}{t} dt \text{ quand } x \text{ tend vers } 0^+, \text{ notez bien}$ a utilisé les intégrales $\int_0^1 \frac{1 - e^{-t}}{t} dt \text{ et } \int_1^{+\infty} \frac{e^{-t}}{t} dt \text{ qui sondéfinis puisque associés à des fonctions intégrables d'aprés le tions précédentes.}$

Une simple utilisation de la relation de Chasles pour interdonne pour tout x>0, $\varphi(x)+\ln x=C+\int_0^x \frac{1-e^{-t}}{t}dt$.

D'autre part : pour tout t>0, $n\in\mathbb{N}^*$ on a : $e^{-t}=\sum_{k=0}^n\frac{(-1)^k}{t}dt$. $R_n(t)$, série alternée, avec $|R_n(t)|\leq \frac{t^{n+1}}{(n+1)!}$, donc $\int_0^x \frac{1-e^{-t}}{t}dt$. $\int_0^x \left(\sum_{k=1}^n \frac{(-1)^{k-1}t^{k-1}}{k!} - \frac{R_n(t)}{t}\right)dt = \sum_{k=1}^n \int_0^x \frac{(-1)^{k-1}t^{k-1}}{k!}dt$ $\int_0^x \frac{R_n(t)}{t}dt = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}\frac{x^k}{k!} - \int_0^x \frac{R_n(t)}{t}dt$, or $|\int_0^x \frac{R_n(t)}{t}dt| \leq \int_0^x |\frac{R_n(t)}{t}|dt \leq \int_0^x \frac{t^n}{(n+1)!}dt$ $\frac{x^{n+1}}{(n+1)(n+1)!}dt \to 0 \text{ quand } n \to +\infty \text{ pour } x>0 \text{ fixe, puissances sont négligeables devant les factoriels. Donc quant <math>n \to +\infty$ avec x>0 fixe, on obtient : $\int_0^x \frac{1-e^{-t}}{t}dt$

$$\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} \frac{x^k}{k!}$$
 et on peut en déduire que

$$\varphi(x) + \ln x = C + \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} \frac{x^k}{k!}.$$

- a) Montrons d'abord que φ est intégrable sur $]0,+\infty[$, en effet d'aprés les questions 2.a et 1.b on peut affirmer que φ est intégrable sur $[1,+\infty[$ et d'aprés la question 2.d et vu que $\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} \frac{x^k}{k!} \sim x$ au voisinage de 0, on peut affirmer aussi que $\varphi(x) + \ln x \sim C + x$ au voisinage de 0, or $x \mapsto C + x$ et $x \mapsto \ln x$ sont intégrables sur]0,1], $(\int_x^1 |\ln t| dt = 1 + x \ln x x)$ donc φ est intégrable sur $]0,+\infty[$ et par suite $\psi x :\mapsto \varphi(|x|)$ est intégrable sur les deux intervalles $]-\infty,0[$ et $]0,+\infty[$.
 - b) Pour tout $x \in \mathbb{R}$, on a $|e^{ixt}\psi| \leq |\varphi(t)|$ et $t \mapsto |\psi|$ intégrable sur les deux intervalles $]-\infty,0[$ et $]0,+\infty[$, donc $t \mapsto e^{ixt}\psi(t)$ l'est aussi donc les intégrales $I_1 = \int_0^{+\infty} e^{ixt}\psi dt$ et $I_2 = \int_{-\infty}^0 e^{ixt}\psi(t)dt$ ont un sens et donc $\widehat{\psi}(x) = I_1 + I_2$ a un sens. D'autre part : $\widehat{\psi}(x) = \int_{-\infty}^{+\infty} e^{ixt}\psi(t)dt = \int_0^{+\infty} \frac{1}{2}e^{ixt}\varphi(t)dt + \int_0^0 \frac{1}{2}e^{ixt}\varphi(-t)dt = \int_0^{+\infty} \frac{1}{2}e^{ixt}\varphi(t)dt + \int_0^{+\infty} \frac{1}{2}e^{-ixu}\varphi(u)du = \int_0^{+\infty} \frac{1}{2}e^{ixt}\varphi(t)dt + \int_0^{+\infty} \frac{1}{2}e^{-ixt}\varphi(t)dt = \int_0^{+\infty} \varphi(t)\cos(xt)dt$.
 - c) La fonction $\xi:(x,t)\mapsto \varphi(t)\cos(xt)$ est intégrable sur $]0,+\infty[$ par rapport à t pour x fixé, elle est de classe \mathcal{C}^{∞} sur \mathbb{R} par rapport x dont la dérivée n-ème est $\frac{\partial^n \xi}{\partial x^n}: t\mapsto t^n \varphi(t)\cos(xt+n\frac{\pi}{2}), \text{ on a } |\frac{\partial^n \xi}{\partial x^n}(x,t)| \leq t^n \varphi(t) \quad \forall t\in]0,+\infty[$. Montrons alors que $t\mapsto t^n \varphi(t)$ est intégrable sur $]0,+\infty[$,

en effet au voisinage de 0 on a : $t^n \varphi(t) + t^n \ln t \sim Ct^n + t^{n+1}$, or $t \mapsto t^n C + t^{n+1}$ et $t \mapsto t^n \ln t$

intégrables sur]0,1] donc $t \mapsto t^n \varphi(t)$ est intégrable sur]0,1] suite $\xi: t \mapsto t^n \varphi(t)$ est intégrable sur]0,1], et donc $t \mapsto \frac{\partial^r}{\partial x^n}$

est aussi intégrable sur]0,1]. D'autre part, d'aprés la question 2.a $0 < t^n \varphi(t) < t^{n-1} e^{-t}$ $[0,+\infty[$ et comme $t^{n-1}e^{-t}$ est négligeable devant $\frac{1}{t^2}$ au voisin $+\infty$, car les exponentielles l'emportent devant les puissances $t \mapsto \frac{1}{t^2}$ est intégrable sur $[1,+\infty[$ alors $t \mapsto t^n \varphi(t)$ est intégral $[1,+\infty[$ et par suite $t \mapsto \frac{\partial^n \xi}{\partial x^n}(x,t)$ l'est aussi.

Conclusion : $t \mapsto \frac{\partial^n \xi}{\partial x^n}(x,t)$ est intégrable sur $]0,+\infty[$, le th de dérivation sous signe intégrale permet d'affirmer que $\widehat{\psi}$ classe \mathcal{C}^{∞} sur \mathbb{R} avec :

$$\widehat{\psi}^{(n)}(x) = \int_0^{+\infty} t^n \varphi(t) \cos(xt + n\frac{\pi}{2}) dt$$

d) Pour tout réel non nul x, on a à l'aide d'une intégration par $\widehat{\psi}(x) = \int_0^{+\infty} \varphi(t) \cos(xt) dt = \left[\varphi(t) \frac{\sin xt}{x} \right]_{t \to 0}^{t \to \infty}$ $\int_0^{+\infty} \varphi'(t) \frac{\sin xt}{x} dt = \frac{1}{x} \int_0^{+\infty} \frac{e^{-t}}{t} \sin(xt) dt, \text{ car d'aprés 2.a } |\varphi(t) \frac{\sin xt}{x}| \le \frac{e^{-t}}{x} \to 0,$ $t \to +\infty \text{ pour } x \text{ fixé, et d'aprés 2.d } \varphi(t) + \ln t \sim C + t \text{ au voide 0, donc}$ $\varphi(t) \frac{\sin xt}{x} + \frac{\sin xt}{x} \ln t \sim (C + t) \frac{\sin xt}{x} \text{ quand } t \to 0 \text{ pour } t \to 0$

comme $\frac{\sin xt}{x} \sim t$ quand $t \to 0$ pour x fixé, alors $\varphi(t) \frac{\sin xt}{x} + (C+t)t$ quand $t \to 0$ pour x fixé et donc $\lim_{t \to 0} \varphi(t) \frac{\sin xt}{x} = 0$,

Ainsi $\widehat{\psi}(x) = \frac{F(x)}{x}$, avec $\Phi: x \mapsto \int_0^{+\infty} \rho(x,t) dt$ telle que Φ et

 $\rho(x,t) = \frac{e^{-t}}{t}\sin(xt), \text{ donc } \widehat{\psi}(0) = \Phi'(0) \text{ à condition qu'on peut dériver sous signe intégral, ce qui n'est pas difficile à justifier puisque } \frac{\partial \rho}{\partial x} : t \mapsto e^{-t}\cos xt \text{ est intégrable sur } [0,+\infty[\text{ puisque majorée par } e^{-t}, \text{ intégrable sur } [0,+\infty[, \text{ pour } x \text{ fixé.}]$

Donc
$$\widehat{\psi}(0) = \Phi'(0) = \int_0^{+\infty} \frac{\partial \rho}{\partial x}(0, t) dt = \int_0^{+\infty} e^{-t} dt = 1.$$

- 4) a) Dans la question précédente on a déjà montré que la fonction $\Phi: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{t} \sin(xt) dt$ est dérivable sur $]0, +\infty[$ avec $\Phi'(x) = \int_0^{+\infty} e^{-t} \cos(xt) dt$, pour tout x > 0, puis on a : $\Phi'(x) = \Re e \int_0^{+\infty} e^{-t} e^{ixt} = \Re e \int_0^{+\infty} e^{(ix-1)t} = \Re e \left[\frac{e^{(ix-1)t}}{ix-1} \right]_{t\to 0}^{t\to +\infty} = -\Re e \left(\frac{1}{ix-1} \right) = \frac{1}{x^2+1}$. Notez bien que : $|e^{(ix-1)t}| = e^{-t} \to 0$ quand $t \to +\infty$.
 - b) D'aprés la question précédente, on a : $\widehat{\psi}(x) = \frac{\Phi(x)}{x}$ pour tout réel non nul x, et Φ est de classe \mathcal{C}^1 sur $]0, +\infty[$ avec $\Phi'(x) = \frac{1}{1+x^2} \ \forall x > 0$, donc $\Phi(x) = \arctan x + \lambda \ \forall x > 0$, de même $\Phi(x) = \arctan x + \mu \ \forall x < 0$, donc

$$\widehat{\psi}(x) = \begin{array}{cc} \frac{\arctan x + \lambda}{x} & \forall x > 0 \\ \frac{\arctan x + \mu}{x} & \forall x < 0 \\ 1 & \text{si } x = 0 \end{array}$$

comme $\widehat{\psi}$ est continue sur \mathbb{R} alors $\lambda = \mu = 0$ d'où le résultat.

II.QUELQUES PROPRIÉTÉS DE LA TRANSFORMÉE DE FOURIER D'UNE FONCTION

1) Transformée de Fourier d'une fonction intégrable

a) Pour x fixé, on a : $|e^{-ixt}f(t)| \le |f(t)| \quad \forall t \in \mathbb{R}$, or f une fonction continue par morceaux et intégrable sur \mathbb{R} ; donc $t \mapsto e^{-ixt}f(t)$ l'est aussi d'où pour tout réel x, $\widehat{f}(x) = \int_{-\infty}^{+\infty} e^{-ixt}f(t)dt$ est bien définie,

en plus
$$|\widehat{f}(x)| = |\int_{-\infty}^{+\infty} e^{-ixt} f(t) dt| \le \int_{-\infty}^{+\infty} |f(t)| dt = M$$
, con qui ne dépond pas de x et donc la fonction \widehat{f} est bornée.

b) Si de plus f est continue, alors $t \mapsto e^{-ixt} f(t)$ est intégrable s $x \mapsto e^{-ixt} f(t)$ continue sur \mathbb{R} , donc \hat{f} est aussi continue.

2) Transformations

- a) Soient φ_1, φ_2 deux fonctions complexes continues par morce intégrables sur \mathbb{R} , et $\lambda \in \mathbb{R}$ alors $\varphi_1 + \lambda \varphi_2$ est aussi un tion complexe continues par morceaux et intégrable sur \mathbb{R} $F(\varphi_1 + \lambda \varphi_2)(x) = \int_{-\infty}^{+\infty} e^{-ixt} (\varphi_1 + \lambda \varphi_2)(t) dt = \int_{-\infty}^{+\infty} e^{-ixt} \varphi_1(t) + \lambda \int_{-\infty}^{+\infty} e^{-ixt} \varphi_2(t) dt = F(\varphi_1)(x) + \lambda F(\varphi_2)(x) dt = F(\varphi_1)(x) dt = F(\varphi_1)(x$
- b) f est une fonction continue par morceaux et intégrable sur \mathbb{F} pour tout réel a, les fonctions $f_a(t) = f(t-a)$ et ${}_af(t) = f(a)$ aussi des fonctions continues par morceaux et intégrables su par suite possédent des transformés de Fourier, avec que por réel x, $\widehat{f}_a(x) = \int_{-\infty}^{+\infty} e^{-ixt} f(t-a) dt = e^{-iax} \int_{-\infty}^{+\infty} e^{-ixu} f(a) e^{-iax} \widehat{f}(x)$, en utilisant le changement de variable u = t e même avec le changement de variable v = at on obtient $\widehat{f}_a(x) = \frac{1}{|a|} \widehat{f}(x) = \frac{1}{|a|} \widehat{f}(x) = 0$, faites attention ici aux bornes si a < 0 alo devient $+\infty$ et inversement ce qui justifie le |a|.
- c) La transformée de Fourier de l'application $t\mapsto f(t)e^{iat}$ au pest : $\int_{-\infty}^{+\infty} e^{-i(x-a)t}f(t)dt = \widehat{f}(x-a).$

d) Si
$$f$$
 est paire alors $\widehat{f}(x) = \int_{-\infty}^{0} e^{-ixt} f(t) dt + \int_{0}^{\infty} e^{-ixt} f(t) dt$

$$\int_{0}^{+\infty} e^{-ixt} f(t) dt + \int_{0}^{\infty} e^{ixu} f(-u) du = \int_{0}^{+\infty} e^{-ixt} f(t) dt$$

$$\int_{0}^{\infty} e^{ixu} f(u) du = \int_{0}^{+\infty} e^{-ixt} f(t) dt + \int_{0}^{\infty} e^{ixt} f(t) dt$$

$$2\int_0^{+\infty}\cos(xt)f(t)dt$$
, on a utilisé le changement de variable $u=-t$ puis on a remplacé u par t puisque sont deux variables muettes.
Si f est impaire on obtient $\widehat{f}(x)=2i\int_0^{+\infty}\sin(xt)f(t)dt$.

e) La transformée de Fourier d'une fonction réelle paire est réelle alors que celle d'une fonction réelle impaire est imaginaire.

3) Dérivation

- a) f' étant intégrable sur \mathbb{R} , donc $\int_0^x f'(t)dt = f(x) f(0)$ admet une limite finie quad $x \longrightarrow +\infty$, et donc $\lim_{t \to \infty} f$ est finie, soit L cette limite, si $L \neq 0$ alors $|f(x)| \longrightarrow |L| > \frac{|L|}{2}$, quand $x \longrightarrow +\infty$, or f est continue, donc un intervalle $[A, +\infty[$ sur lequel $|f| > \frac{|L|}{2}$, or f est intégrable sur $[A, +\infty[$, donc le fonction constante $\frac{|L|}{2}$ le sera aussi, ce qui n'est pas le cas, donc $L = \lim_{t \to \infty} f = 0$, et de même on montre que $\lim_{t \to \infty} f = 0$.
- b) f' étant une fonction continue par morceaux et intégrable sur \mathbb{R} , donc admet une transformée de Fourrier, définie par la relation : $\forall x \in \mathbb{R}$: $\widehat{f}'(x) = \int_{-\infty}^{+\infty} e^{-ixt} f'(t) dt = \left[e^{-ixt} f(t)\right]_{t \to -\infty}^{t \to +\infty} + ix \int_{-\infty}^{+\infty} e^{-ixt} f(t) dt = ix \widehat{f}(x)$, donc $\widehat{f}(x) = \frac{\widehat{f}'(x)}{x}$ tend vers 0 en $\pm \infty$, car \widehat{f}' est bornée en utilisant la question II.1.a pour la fonction f'.
- c) Le fait que l'application $g: t \mapsto tf(t)$ est intégrable sur \mathbb{R} nous permet d'affirmer que \widehat{f} est de classe \mathcal{C}^1 sur \mathbb{R} et de dériver sous le signe intégral; avec :

$$\forall x \in \mathbb{R}, \quad (\widehat{f})'(x) = -i \int_{-\infty}^{+\infty} e^{-ixt} t f(t) dt = -i\widehat{g}(x).$$

III.UNE FORMULE D'INVERSION

A-Un autre exemple

La fonction h est de classe C^1 sur \mathbb{R} , intégrable sur \mathbb{R} , et $t \vdash$ intégrable sur \mathbb{R} , (car négligeables devant $\frac{1}{t^2}$ en $\pm \infty$), donc \hat{h} e définie, dérivable sur \mathbb{R} avec :

$$\forall x \in \mathbb{R}, \quad \widehat{h}'(x) = -i \int_{-\infty}^{+\infty} e^{-ixt} t e^{-t^2} dt = -i \left[-e^{-ixt} \frac{e^{-t^2}}{2} \right]_{t=0}^{t=0}$$

$$\frac{x}{2} \int_{-\infty}^{+\infty} e^{-ixt} e^{-t^2} dt = -\frac{x}{2} \widehat{h}'(x) \text{ et donc } \widehat{h} \text{ satisfait l'équation différence}$$

$$y' + \frac{x}{2} y = 0.$$

- 2) La solution générale de l'équation différentielle (1) est de la $y(x) = \lambda e^{-\frac{x^2}{4}}$, donc $\hat{h}(x) = \lambda e^{-\frac{x^2}{4}}$ où $\lambda = \hat{h}(0) = \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\frac{x^2}{4}}$
- 3) $e^{-\varepsilon t^2} = \sqrt{\varepsilon} h(t)$, donc d'aprés la question II.2.b la transformée de Fourier de la fonction $e^{-\varepsilon t^2}$, $\varepsilon > 0$ est : $\frac{1}{\sqrt{\varepsilon}} \hat{h} \left(\frac{x}{\sqrt{\varepsilon}} \right) = \sqrt{\frac{\pi}{\varepsilon}} e^{-\frac{x^2}{4\varepsilon}}$.

B-Application à la formule d'inversion

4

- 1) a) Soit les $v_n \in \mathcal{C}^0(\mathbb{R})$ définies par $v_n(y) = v(y)e^{-\varepsilon_n y^2}$, se so fonctions intégrables sur \mathbb{R} car dominées par v intégrables su qui de plus convergent simplement vers v. En utilisant le th de la convergence dominée, on a que : $\lim_{n \longrightarrow +\infty} \int_{-\infty}^{+\infty} v(y)e^{-\varepsilon_n y} dy = \int_{-\infty}^{+\infty} v(y)dy$.
 - b) Même que précédement, poser $w_n(y) = w(x + \varepsilon_n y)e^{-y^2}$ c'e fonction intégrable sur \mathbb{R} car bornée par la fonction int $y \mapsto \sup_{\mathbb{R}} |w|e^{-y^2}$, de plus $\lim_{n \to +\infty} w_n(y) = w(x)e^{-y^2}$ $\lim_{n \to +\infty} \int_{-\infty}^{+\infty} w(x + \varepsilon_n y)e^{-y^2} dy = \int_{-\infty}^{+\infty} \lim_{n \to +\infty} w(x + \varepsilon_n y)e^{-y^2} dy = \int_{-\infty}^{+\infty} w(x)e^{-y^2} dy = w(x) \int_{-\infty}^{+\infty} e^{-y^2} dy = w(x) \sqrt{\pi}.$
- Pour tout $n \in \mathbb{N}$ et tout $x \in \mathbb{R}$, on a, et ceci d'aprés la q III.A.3 $\int_{-\infty}^{+\infty} e^{-iy(t-x)-\varepsilon_n y^2} dy = \frac{1}{\sqrt{\varepsilon_n}} \hat{h} \left(\frac{t-x}{\sqrt{\varepsilon_n}} \right) = \sqrt{\frac{\pi}{\varepsilon_n}} e^{-\frac{(t-x)^2}{4\varepsilon_n}}$

$$\int_{-\infty}^{+\infty} f(t) \left(\int_{-\infty}^{+\infty} e^{-iy(t-x)-\varepsilon_n y^2} dy \right) dt = \int_{-\infty}^{+\infty} f(t) \sqrt{\frac{\pi}{\varepsilon_n}} e^{-\frac{(t-x)^2}{4\varepsilon_n}} dt = 2\sqrt{\pi} \int_{-\infty}^{+\infty} f(x+2\sqrt{\varepsilon_n s}) e^{-s^2} ds, \text{ en effectuant le changement de variable } s = \frac{t-x}{2\sqrt{\varepsilon_n}}.$$

- 3) a) C'est le théorème de Fubini qui nous permet d'intervertir les deux intégrales, puisqu'il s'agit d'une fonction continue sur le carré $[-p,p]\times[-q,q].$
 - b) Posons, pour tout $y \in \mathbb{R}$, $f_q(y) = e^{ixy \varepsilon y^2} \left(\int_{-q}^q f(t) e^{-iyt} dt \right)$, on a: $\lim_{q \to +\infty} f_q(y) = e^{ixy \varepsilon y^2} \int_{-\infty}^{+\infty} f(t) e^{-iyt} dt \text{ et } |f_q(y)| \leq 2q \sup_{\mathbb{R}} |f| e^{-\varepsilon y^2},$ majorée normalement par une fonction intégrable sur \mathbb{R} , donc $\lim_{q \to +\infty} f_q \text{ est intégrable sur } \mathbb{R} \text{ avec}$

$$\lim_{\substack{q \to +\infty \\ \varepsilon > 0,}} \int_{-\infty}^{+\infty} f_q(y) dy = \int_{-\infty}^{+\infty} \lim_{\substack{q \to +\infty \\ q \to +\infty}} f_q(y) dy, \text{ ce qui donne pour tout}$$

$$\lim_{q \to +\infty} \int_{-\infty}^{+\infty} e^{ixy - \varepsilon y^2} \left(\int_{-q}^{q} f(t) e^{-iyt} dt \right) dy = \int_{-\infty}^{+\infty} e^{ixy - \varepsilon y^2} \left(\int_{-\infty}^{+\infty} f(t) e^{-iyt} dt \right) dy.$$

c) Le même raisonnement que précédement en posant cette fois $g_q(t) = f(t) \left(\int_{-p}^p e^{-iy(t-x)-\varepsilon y^2} dy \right)$, et faire tendre p vers $+\infty$ nous

permet d'affirmer aussi que pour tout entier naturel non n tout $\varepsilon > 0$,

$$\lim_{p \to +\infty} \int_{-q}^{q} f(t) \left(\int_{-p}^{p} e^{-iy(t-x)-\varepsilon y^{2}} dy \right) dt = \int_{-q}^{q} f(t) \left(\int_{-\infty}^{+\infty} e^{-iy(t-x)-\varepsilon y^{2}} dy \right) dt$$

- d) Conclusion immédiate des question précédents.
- 4) D'aprés les questions III.B.2. et III.B.3.c, en remplaçant ε par $(\varepsilon_n)_n$ une suite de réels strictement positifs tendant vers 0, $2\sqrt{\pi}\int_{-\infty}^{+\infty}f(x+2\sqrt{\varepsilon_n s})e^{-s^2}ds=\int_{-\infty}^{+\infty}e^{ixy-\varepsilon y^2}\widehat{f}(y)dy$. Et apré vérifié qu'on peut intervertir limites et intégrales, chose qui n'est plicile puisque $e^{ixy-\varepsilon_n y^2}\widehat{f}(y)$ sont normalement bornées par \widehat{f} , integrable sur \mathbb{R} et $f(x+2\sqrt{\varepsilon_n s})e^{-s^2}$ sont normalement bornées par supplimitégrable sur \mathbb{R} aussi, donc qund $n\longrightarrow +\infty$, on obtient : pour to \mathbb{R} , $\frac{1}{2\pi}\int_{-\infty}^{+\infty}f(x)e^{-s^2}ds=\int_{-\infty}^{+\infty}e^{ixy}\widehat{f}(y)dy$, comme $\int_{-\infty}^{+\infty}e^{-s^2}ds=a$ le résultat.

Fin.