

http://myismail.net

Contrôle N° 2 (2 heures) Algèbre Linéaire

Exercice 1: e3a 2020 MP

On note $\mathscr C$ l'ensemble des suites réelles $x=(x_n)_{n\in\mathbb Z}$ indexées par $\mathbb Z$ telles que les sous-suites $(x_n)_{n\in\mathbb N}$ et $(x_{-n})_{n\in\mathbb{N}}$ convergent.

On admettra que l'ensemble E des suites réelles indexées par \mathbb{Z} est un \mathbb{R} -espace vectoriel.

L'endomorphisme identité de l'espace E sera noté id $_E$.

On définit les applications S et T de $\mathscr C$ dans E par :

$$\forall x \in \mathscr{C}, \ S(x) = z, \ \text{avec} \quad \forall n \in \mathbb{Z}, \ z_n = x_{-n}$$

 et

$$\forall x \in \mathscr{C}, \ T(x) = y, \ \text{avec} \quad \forall n \in \mathbb{Z}, \ y_n = x_{n-1} + x_{n+1}.$$

- 1. Donner un exemple de suite non constante, élément de \mathscr{C} .
- **2.** Montrer que \mathscr{C} est un sous-espace vectoriel de l'espace vectoriel E.
- **3.** Prouver que si une suite x est dans \mathscr{C} , elle est bornée.
- 4. Montrer que T est un endomorphisme de \mathscr{C} . On admettra qu'il en est de même de S.
- **5.** Soient $F = \{x \in \mathscr{C}, \forall n \in \mathbb{Z}, x_n = x_{-n}\}\$ et $G = \{x \in \mathscr{C}, \forall n \in \mathbb{Z}, x_n = -x_{-n}\}.$ Montrer que F et G sont deux sous-espaces vectoriels supplémentaires de \mathscr{C} .
- **6.** Étude de l'endomorphisme S

Prouver que S est une symétrie de $\mathscr C$ dont on précisera les éléments caractéristiques.

7. Étude de l'endomorphisme T

On rappelle qu'une suite x est dans $\mathscr C$ lorsque les deux sous-suites $(x_n)_{n\in\mathbb N}$ et $(x_{-n})_{n\in\mathbb N}$ sont convergentes.

- **7.1.** Soit λ un réel. Montrer que si $\lambda \notin \{-2, 2\}$, $\operatorname{Ker}(T \lambda \operatorname{id}_{\mathscr{C}}) = \{0_{\mathscr{C}}\}$ où $0_{\mathscr{C}}$ désigne le vecteur
 - On pourra utiliser les questions de cours.
- **7.2.** L'endomorphisme T est-il injectif?
- **7.3.** Déterminer $Ker(T-2 id_{\mathscr{C}})$ et $Ker(T+2 id_{\mathscr{C}})$.

Exercice 2:

2021 - E3A - MP - MATHÉMATIQUES UNIQUE

Dans tout l'exercice, n est un entier naturel non nul.

Soit φ l'application qui à tout polynôme P de $\mathbb{R}_n[X]$ associe $\varphi(P) = \int_0^1 P(t) \ dt$.

- 1. Démontrer que $\mathcal{B} = (1, X 1, X(X 1), \dots, X^{n-1}(X 1))$ est une base de $\mathbb{R}_n[X]$.
- 2. Généralités sur φ .
 - 2.1. Démontrer que φ est une forme linéaire sur $\mathbb{R}_n[X]$.
 - 2.2. Déterminer $\operatorname{Im}(\varphi)$ et la dimension du noyau de φ .
- 3. On considère alors l'application ψ qui à tout polynôme P de $\mathbb{R}_n[X]$ associe le polynôme Q tel que :

$$\forall x \in \mathbb{R}, \quad Q(x) = \int_0^x P(t)dt.$$

- 3.1. Justifier que l'application ψ est linéaire.
- 3.2. Démontrer que $\operatorname{Im}(\psi) = \operatorname{Vect}(X, X^2, \dots, X^{n+1})$.
- 3.3. Démontrer que : $P \in \text{Ker}(\varphi) \Leftrightarrow \psi(P) \in \text{Vect}(X(X-1), \dots, X^n(X-1))$.
- 3.4. Donner alors une base de $\operatorname{Ker}(\varphi)$.
- 4. On note $\mathcal{H} = \mathcal{L}(\mathbb{R}_n[X], \mathbb{R})$.
 - 4.1. Donner la dimension de \mathcal{H} .
 - 4.2. Pour $k \in [|0, n|]$, soit ψ_k la forme linéaire sur $\mathbb{R}_n[X]$ qui à tout polynôme P de $\mathbb{R}_n[X]$ associe $\frac{P^{(k)}(0)}{k!}$. Démontrer que la famille (ψ_0, \dots, ψ_n) est une base de \mathcal{H} .
 - 4.3. Déterminer les composantes de φ dans cette base.

Corrigé

Exercice 1: e3a 2020 MP

- 1. La suite $\left(\frac{1}{\operatorname{ch} n}\right)_{n\in\mathbb{Z}}$ est une suite de réels indexée par \mathbb{Z} telle que les sous-suites $\left(\frac{1}{\operatorname{ch} n}\right)_{n\in\mathbb{N}}$ et $\left(\frac{1}{\operatorname{ch}(-n)}\right)_{n\in\mathbb{N}}$ convergent. Par ailleurs ce n'est pas une suite constante. On a bien trouvé une suite non constante élément de \mathscr{C}
- **2.** \mathscr{C} est une partie non vide de E (contient la suite précédente).
 - Soit $(x, x') \in \mathcal{C}^2$ et $(\alpha, \beta) \in \mathbb{R}^2$. On pose $y = \alpha x + \beta x'$ et on note x_n, x'_n, y_n les termes généraux des suites x, x', y'.

On a : $\forall n \in \mathbb{Z}, y_n = \alpha x_n + \beta x'_n \text{ donc } \forall n \in \mathbb{N}, y_n = \alpha x_n + \beta x'_n \text{ et } \forall n \in \mathbb{N}, y_{-n} = \alpha x_{-n} + \beta x'_{-n}$.

Comme les suites $(x_n)_{n\in\mathbb{N}}$ et $(x'_n)_{n\in\mathbb{N}}$ convergent, il en est de même pour $(y_n)_{n\in\mathbb{N}}$.

Comme les suites $(x_{-n})_{n\in\mathbb{N}}$ et $(x'_{-n})_{n\in\mathbb{N}}$ convergent, il en est de même pour $(y_{-n})_{n\in\mathbb{N}}$.

Ainsi $y \in \mathscr{C}$. Et donc \mathscr{C} est stable par combinaison linéaire.

Donc par caractérisation des sous-espaces vectoriels, $\mathscr C$ est un sous-espace de E

3. Soit $x = (x_n)_{n \in \mathbb{Z}} \in \mathscr{C}$.

La suite $(x_n)_{n\in\mathbb{N}}$ converge donc est bornée : il existe A>0 tel que $\forall n\in\mathbb{N}, |x_n|\leqslant A$.

De même, la suite $(x_{-n})_{n\in\mathbb{N}}$ converge donc est bornée : il existe B>0 tel que $\forall n\in\mathbb{N}, |x_{-n}|\leqslant B$.

On pose alors $C = \max(A, B)$, et on a : $\forall n \in \mathbb{Z}, |x_n| \leq C$: la suite x est bornée.

Ainsi toute suite dans & est bornée

- **4.** Soit $x = (x_n)_{n \in \mathbb{Z}} \in \mathscr{C}$. Soit $y = T(x) = (y_n)_{n \in \mathbb{Z}}$. On a : $\forall n \in \mathbb{Z}, y_n = x_{n-1} + x_{n+1}$. Ainsi :
 - $\forall n \in \mathbb{N}^*, y_n = x_{n-1} + x_{n+1}$ donc la suite $(y_n)_{n \in \mathbb{N}^*}$ est la somme des suites $(x_{n-1})_{n \in \mathbb{N}^*}$ et $(x_{n+1})_{n \in \mathbb{N}^*}$ qui sont extraites de $(x_n)_{n \in \mathbb{N}}$ donc qui convergent. Ainsi $(y_n)_{n \in \mathbb{N}^*}$ et donc, comme la convergence d'une suite ne dépend pas des premiers termes, $(y_n)_{n \in \mathbb{N}}$ converge.
 - De même $(y_{-n})_{n\in\mathbb{N}}$ converge

Ainsi $y \in \mathscr{C}$.

On en déduit que T est une application de \mathscr{C} vers \mathscr{C} .

Montrons la linéarité. Soit $(x, x') \in \mathscr{C}^2$ et $(\alpha, \beta) \in \mathbb{R}^2$. On pose y = T(x), y' = T(x'), $z = \alpha x + \beta x'$, et w = T(z) et $v = \alpha y + \beta y'$. On doit établir : $T(\alpha x + \beta x') = \alpha T(x) + \beta T(x')$ i.e. v = w. On note $x_n, x'_n, y_n, y'_n, z_n, w_n, v_n$ les termes généraux des suites x, x', y, y', z, w, v. On a, pour tout $n \in \mathbb{Z}$:

 $v_n = \alpha y_n + \beta y_n' = \alpha (x_{n-1} + x_{n+1}) + \beta (x_{n-1}' + x_{n+1}') = (\alpha x_{n-1} + \beta x_{n-1}') + (\alpha x_{n+1} + \beta x_{n+1}')$. Or dans ces derniers termes on reconnaît $z_{n-1} + z_{n+1} = w_n$. Donc v = w.

Ainsi T est bien une application linéaire de $\mathscr C$ vers $\mathscr C$ i.e. T est un endomorphisme de $\mathscr C$

5. • Méthode 1. On a clairement $S \circ S = \mathrm{id}_E = \mathrm{id}_{\mathscr{C}}$. Donc comme l'énoncé nous dit que S est un endomorphisme de \mathscr{C} , on en déduit que S est une symétrie de \mathscr{C} et donc son axe, $\ker(S - \mathrm{id}_{\mathscr{C}})$, et sa direction, $\ker(S + \mathrm{id}_{\mathscr{C}})$, sont supplémentaires dans \mathscr{C} .

Or on a tout aussi clairement $F = \{x \in \mathcal{C}; \forall n \in \mathbb{Z}, x_n = x_{-n}\} = \{x \in \mathcal{C}; S(x) = x\} = \ker(S - \mathrm{id}_{\mathcal{C}})$ et $G = \ker(S + \mathrm{id}_{\mathcal{C}}), \operatorname{donc} F$ et G sont deux sous-espaces supplémentaires dans \mathcal{C}

• Méthode 2. On a $F = \ker(S - \mathrm{id}_{\mathscr{C}})$ et $G = \ker(S + \mathrm{id}_{\mathscr{C}})$ donc ce sont des sous-espaces de \mathscr{C} , propres pour l'endomorphisme S, associés à des valeurs propres différentes : 1 et -1. Donc F et G sont en somme directe

i.e. $F + G = F \oplus G$.

De plus, si $x \in \mathcal{C}$, $x' = \frac{1}{2}(x + S(x))$ et $x'' = \frac{1}{2}(x - S(x))$, on montre aisément x = x' + x'', $x' \in F$ et $x'' \in G$, donc tout élément de S s'écrit comme somme d'un élément de F et d'un élément de G. Donc comme ce sont des sous-espaces de \mathcal{C} , on a $\mathcal{C} = F + G$.

Ainsi par caractérisation des sous-espaces supplémentaires, F et G sont supplémentaires dans $\mathscr C$

- **6.** En reprenant ce qui a été fait dans la méthode 1 dans la question précédente, on a : S symétrie d'axe F et de direction G
- **7.** .
 - 7.1. Si $\lambda \in \mathbb{R} \setminus \{2, -2\}$. Soit $x \in \ker(T \lambda \mathrm{id}_{\mathscr{C}})$. On a : $\forall n \in \mathbb{Z}, x_{n-1} + x_{n+1} = \lambda x_n$. En particulier : $\forall n \in \mathbb{N}, x_{n+2} \lambda x_{n+1} + x_n = 0$ et, en posant $(x'_n)_{n \in \mathbb{N}} = (x_{-n})_{n \in \mathbb{N}}$, $\forall n \in \mathbb{N}, x'_{n+2} \lambda x'_{n+1} + x'_n = 0$. On considère donc l'équation caractéristique \mathscr{C} de ces suites récurrentes linéaires doubles : $X^2 \lambda X + 1 = 0$ dont le discriminant est $\Delta = \lambda^2 4$ donc est non nul car λ est différent de 2 et de -2
 - Si Δ > 0. Alors les racines de C sont réelles, distinctes et de produit 1. Donc l'une d'entre elles est de module strictement supérieur à 1 et l'autre est son inverse. On note r la racine de module strictement supérieur à 1.

D'après l'expression des suites récurrentes linéaires doubles, On a l'existence de 4 réels A, B, C, D tels que : $\forall n \in \mathbb{N}, x_n = Ar^n + \frac{B}{r^n}$ et $x'_n = Cr^n + \frac{D}{r^n}$. Or les suites $(x_n)_{n \in \mathbb{N}}$ et $(x'_n)_{n \in \mathbb{N}}$ convergent donc A = 0 = C. De plus $x_0 = x'_0$ donc B = D. Enfin $x'_1 + x_1 = \lambda x_0$ donc $(\lambda - 2r)B = 0$. Or les racines de C sont $\frac{\lambda \pm \sqrt{\Delta}}{2}$ donc $|\lambda - 2r| = \sqrt{\Delta} \neq 0$. Ainsi B = D = 0 et donc x est la suite nulle. Donc $\ker (T - \lambda \mathrm{id}_{\mathscr{C}}) \subset \{0_{\mathscr{C}}\}$

S'agissant d'un sous-espace, on en déduit que $\ker (T - \lambda id_{\mathscr{C}}) = \{0_{\mathscr{C}}\}\$

• Si $\Delta < 0$. Alors les racines de \mathcal{C} sont complexes non réelles et conjugués distinctes et de produit 1. Donc elles sont de module 1 et on peut les écrire sous la forme $e^{i\theta}$ et $e^{-i\theta}$ avec $\theta \in]0, 2\pi[$. D'après l'expression des suites récurrentes linéaires doubles réelles, On a l'existence de 4 réels A, B, α, β tels que : $\forall n \in \mathbb{N}, x_n = A\left(\cos(n\theta + \alpha)\right)$ et $x'_n = B\left(\cos(n\theta + \beta)\right)$. Or les suites $(x_n)_{n \in \mathbb{N}}$ et $(x'_n)_{n \in \mathbb{N}}$ convergent alors que les suites $(\cos(n\theta + \alpha))_{n \in \mathbb{N}}$ et $(\cos(n\theta + \beta))_{n \in \mathbb{N}}$ divergent α are α n'est pas un multiple de α donc α es α donc α est la suite nulle. Donc α for α es α la suite nulle. Donc α for α la suite α la suite nulle. S'agissant d'un sous-espace, on en déduit que α for α la suite α la suite nulle.

Ainsi si $\lambda \in \mathbb{R} \setminus \{2, -2\}, \overline{\ker(T - \lambda id_{\mathscr{C}}) = \{0_{\mathscr{C}}\}}$

- **7.2.** On applique le résultat précédent avec $\lambda = 0$. On a $\ker(T) = \{0_{\mathscr{C}}\}$, donc par caractérisation de l'injectivité des applications linéaires, T est injectif
- 7.3. Si $\lambda = 2$. Soit $x \in \ker(T 2id_{\mathscr{C}})$. On a : $\forall n \in \mathbb{Z}, x_{n+2} 2x_{n+1} + x_n = 0$. Donc en généralisant le résultat du cours, comme l'équation caractéristique possède une solution double : 1, il existe $(A, B) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{Z}, x_n = A + Bn$. Comme $(x_n)_{n \in \mathbb{N}}$ converge, on a B = 0 et donc x est une suite constante. Réciproquement, les suites constantes sont clairement dans $\ker(T 2id_{\mathscr{C}})$. Ainsi $\ker(T 2id_{\mathscr{C}})$ est l'ensemble des suites constantes
 - Si $\lambda = -2$. Soit $x \in \ker(T + 2id_{\mathscr{C}})$. On a : $\forall n \in \mathbb{Z}, x_{n+2} + 2x_{n+1} + x_n = 0$. Donc en généralisant le résultat du cours, comme l'équation caractéristique possède une solution double : -1, il existe $(A, B) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{Z}, x_n = (A + Bn)(-1)^n$. Comme $(x_n)_{n \in \mathbb{N}}$ est bornée, on a B = 0 et, comme $(x_n)_{n \in \mathbb{N}}$ converge, on a A = 0 donc x est la suite nulle.

Ainsi
$$\ker (T + 2id_{\mathscr{C}}) = \{0_{\mathscr{C}}\}\$$

Exercice 2:

2021 - E3A - MP - MATHÉMATIQUES UNIQUE

- 1. Notons $P_0=1$ et pour k>0, $P_k=X^{k-1}(X-1)$. Alors $\forall k\in\{0,\dots,n\},$ $\deg(P_k)=k$ donc $\mathcal{B} = (P_0, \dots, P_n)$ est une famille de polynômes à degrés successifs donc \mathcal{B} est une base de $\mathbb{R}_n[X]$
- 2. 1. Soient $(P,Q) \in \mathbb{R}_n[X]^2$ et $(\lambda,\mu) \in \mathbb{R}^2$ alors, d'après la linéarité de l'intégrale,

$$\varphi(\lambda P + \mu Q) = \int_0^1 (\lambda P(t) + \mu Q(t)) dt = \lambda \int_0^1 P(t) dt + \mu \int_0^1 Q(t) dt = \lambda \varphi(P) + \mu \varphi(Q)$$

Donc φ est linéaire et comme de plus $\varphi: \mathbb{R}_n[X] \to \mathbb{R}$ alors φ est une forme linéaire sur $\mathbb{R}_n[X]$.

- 2.2. Comme $\operatorname{Im}(\varphi)$ est un sous-espace vectoriel de \mathbb{R} alors $\operatorname{Im}(\varphi) = \{0\}$ ou $\operatorname{Im}(\varphi) = \mathbb{R}$. Or $1 = \varphi(1) \in \operatorname{Im}(\varphi) \operatorname{donc} | \operatorname{Im}(\varphi) = \mathbb{R}$ D'après le théorème du rang $\dim(\operatorname{Ker}(\varphi)) = \dim(\mathbb{R}_n[X]) - \dim(\operatorname{Im}(\varphi)) = n + 1 - \dim(\mathbb{R})$ donc $\dim(\operatorname{Ker}(\varphi)) = n$.
- 3. 1. Soient $(P,R) \in \mathbb{R}_n[X]^2$ et $(\lambda,\mu) \in \mathbb{R}^2$ alors, d'après la linéarité de l'intégrale, $\forall x \in \mathbb{R}$,

$$\psi(\lambda P + \mu R)(x) = \int_0^x (\lambda P(t) + \mu Q(t))dt = \lambda \int_0^x P(t)dt + \mu \int_0^x R(t)dt = \lambda \psi(P)(x) + \mu \psi(Q)(x)$$

Donc $\psi(\lambda P + \mu R) = \lambda \psi(P) + \mu \psi(Q)$ donc ψ est linéaire

- 3.2 $\operatorname{Im}(\psi) = \psi(\mathbb{R}_n[X]) = \psi(\operatorname{Vect}(1, X, \dots, X^n)) = \operatorname{Vect}(\psi(1), \psi(X), \dots, \psi(X^n)) = \operatorname{Vect}\left(X, \frac{X^2}{2}, \dots, \frac{X^{n+1}}{n+1}\right)$ Donc $|\operatorname{Im}(\psi)| = \operatorname{Vect}(X, X^2, \dots, X^{n+1})$
- 3.3 Notons que $P \in \text{Ker}(\varphi) \Leftrightarrow \int_0^1 P(t)dt = 0 \Leftrightarrow \psi(P)(1) = 0 \Leftrightarrow (X-1)|\psi(P).$ Or, d'après la question précédente $Q \in \text{Im}(\psi) \Leftrightarrow X|Q$ et $\deg(Q) \leq n+1$, donc $P \in \text{Ker}(\varphi) \Leftrightarrow X(X-1)|\psi(P) \text{ et } \deg(\psi(P)) \leq n+1 \Leftrightarrow \exists R \in \mathbb{R}_{n-1}[X], \ \psi(P) = RX(X-1).$ Donc $P \in \text{Ker}(\varphi) \Leftrightarrow \exists (b_0, \dots, b_{n-1}) \in \mathbb{R}^n, \ \psi(P) = \left(\sum_{j=0}^{n-1} b_j X^j\right) X(X-1) \underset{k=j+1}{=} \sum_{k=1}^n b_{k-1} X^k (X-1)$ Donc $P \in \text{Ker}(\varphi) \Leftrightarrow \psi(P) \in \text{Vect}(X(X-1), \dots, X^n(X-1))$

3.4 Comme $\psi(P)(x) = \int_0^x P(t)dt$, en dérivant on obtient $(\psi(P))'(x) = P(x)$. Donc

$$\psi(P) \in \operatorname{Vect}(X(X-1), \dots, X^{n}(X-1)) \quad \Rightarrow \quad \exists (c_{1}, \dots, c_{n}) \in \mathbb{R}^{n}, \ \psi(P) = \sum_{k=1}^{n} c_{k} X^{k} (X-1)$$

$$\Rightarrow \quad \exists (c_{1}, \dots, c_{n}) \in \mathbb{R}^{n}, \ \psi(P)' = \sum_{k=1}^{n} c_{k} ((k+1)X^{k} - kX^{k-1})$$

$$\Rightarrow \quad \exists (c_{1}, \dots, c_{n}) \in \mathbb{R}^{n}, \ P = \sum_{k=1}^{n} c_{k} ((k+1)X^{k} - kX^{k-1})$$

Donc, d'après la question précédente,

 $P \in \text{Ker}(\varphi) \Rightarrow P \in \text{Vect}(2X - 1, 3X^2 - 2X, \dots, (n+1)X^n - nX^{n-1}).$ donc

 $Ker(\varphi) \subset Vect(2X - 1, ..., (n + 1)X^n - nX^{n-1}).$ Notons $\mathcal{C} = (2X - 1, ..., (n + 1)X^n - nX^{n-1}).$

D'après la question 2.2., $\dim(\operatorname{Ker}(\varphi)) = n = \operatorname{Card}(\mathcal{C}) \geq \dim(\operatorname{Vect}(\mathcal{C}))$.

Donc
$$\operatorname{Ker}(\varphi) = \operatorname{Vect}(\mathcal{C}) = \operatorname{Vect}(2X - 1, \dots, (n+1)X^n - nX^{n-1})$$

- 4. 1. $\dim(\mathcal{H}) = \dim(\mathcal{L}(\mathbb{R}_n[X], \mathbb{R})) = \dim(\mathbb{R}_n[X]) \dim(\mathbb{R}) = n+1$
 - 4.2. Tout d'abord on constate que les ψ_k sont dans \mathcal{H} .

Soient
$$(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$$
, tels que $\sum_{k=0}^n \lambda_k \psi_k = 0$.

Si
$$j < k$$
, $(X^j)^{(k)} = 0$ et si $j \ge k$, $(X^j)^{(k)} = \frac{j!}{(j-k)!} X^{j-k}$ donc $\psi_k(X^j) = 0$ si $j \ne k$ et $\psi_k(X^k) = 1$.

Soit
$$P = \sum_{j=0}^{n} \lambda_j X^j$$
 alors notons que $\psi_k(P) = \sum_{j=0}^{n} \lambda_j \psi_k(X^j) = \lambda_k$ donc

$$0 = \left(\sum_{k=0}^{n} \lambda_k \psi_k\right)(P) = \sum_{k=0}^{n} \lambda_k \psi_k(P) = \sum_{k=0}^{n} \lambda_k^2$$

Donc, comme une somme de termes positifs est nulle si et seulement si tous ses termes sont nuls alors $\lambda_0 = \lambda_1 = \ldots = \lambda_n = 0$. Donc (ψ_0, \ldots, ψ_n) est une famille libre de \mathcal{H} .

Et comme, d'après la question précédente, $\operatorname{Card}(\psi_0, \dots, \psi_n) = n + 1 = \dim(\mathcal{H})$ alors (ψ_0, \dots, ψ_n) est une base de \mathcal{H} .

4.3. D'après la question précédente, si $P = \sum_{k=0}^{n} a_k X^k$ alors $\psi_k(P) = a_k$ donc

$$\varphi(P) = \int_0^1 P(t)dt = \int_0^1 \left(\sum_{k=0}^n a_k t^k\right) dt = \sum_{k=0}^n \frac{a_k}{k+1} = \sum_{k=0}^n \frac{\psi_k(P)}{k+1}$$

Donc
$$\varphi = \sum_{k=0}^{n} \frac{\psi_k}{k+1}.$$