

Contrôle (2h)

Séries Numériques

Notations

On note T l'ensemble des suites réelles $t=(t_n)_{n\in\mathbb{N}^*}$ à valeurs dans $\{0;1;2\}$:

$$\forall n \in \mathbb{N}^*, t_n \in \{0; 1; 2\}.$$

On désigne par ℓ^{∞} l'ensemble des suites réelles $u=(u_n)_{n\in\mathbb{N}^*}$ bornées et on pose $\|u\|=\sup_{n\in\mathbb{N}^*}|u_n|$.

On note |y| la partie entière d'un réel y.

PARTIE I - Développement ternaire

Étude de l'application σ

- **Admise Q1.** Démontrer que ℓ^{∞} est un espace vectoriel réel et que l'application $u \mapsto ||u||$ est une norme sur ℓ^{∞} .
 - **Q2.** Pour $u = (u_n)_{n \in \mathbb{N}^*} \in \ell^{\infty}$, démontrer que la série de terme général $\frac{u_n}{3^n}$ est convergente. On note alors :

$$\sigma(u) = \sum_{n=1}^{+\infty} \frac{u_n}{3^n}.$$

Continuité

Admise Q3. Démontrer que l'application σ est une forme linéaire continue sur ℓ^{∞} .

- **Q4.** Démontrer que si $t = (t_n)_{n \in \mathbb{N}^*} \in T$, alors le réel $\sigma(t)$ est dans l'intervalle [0,1].
- **Q5.** On note $\tau = (\tau_n)_{n \in \mathbb{N}^*}$ et $\tau' = (\tau'_n)_{n \in \mathbb{N}^*}$ les éléments de T définis par :

$$\tau_1 = 1 \text{ et } \forall n \in \mathbb{N}^* \setminus \{1\}, \ \tau_n = 0$$

$$\tau'_1 = 0 \text{ et } \forall n \in \mathbb{N}^* \setminus \{1\}, \ \tau_n = 2.$$

Calculer $\sigma(\tau)$ et $\sigma(\tau')$. L'application σ est-elle injective sur T?

Développement ternaire propre

On fixe $x \in [0,1[$. On définit une suite $t(x) = (t_n(x))_{n \in \mathbb{N}^*}$ par :

$$\forall n \in \mathbb{N}^*, \quad t_n(x) = \lfloor 3^n x \rfloor - 3\lfloor 3^{n-1} x \rfloor.$$

Q6. Démontrer que $t(x) \in T$.

Q7. On définit deux suites réelles $(x_n)_{n \in \mathbb{N}^*}$ et $(y_n)_{n \in \mathbb{N}^*}$ par :

$$\forall n \in \mathbb{N}^*, \qquad x_n = \frac{\lfloor 3^n x \rfloor}{3^n} \quad \text{et} \quad y_n = x_n + \frac{1}{3^n}.$$

Démontrer que les suites (x_n) et (y_n) sont adjacentes de limite x. En déduire que :

$$x = \sum_{n=1}^{+\infty} \frac{t_n(x)}{3^n}.$$

Que peut-on en conclure concernant l'application $\begin{cases} T \to [0,1] \\ u \mapsto \sigma(u) \end{cases}$?

La suite $t(x) = (t_n(x))_{n \in \mathbb{N}^*}$ est appelée développement ternaire propre de x.

PARTIE II - Étude d'une fonction définie par une série

Dans cette partie, on définit une fonction φ à l'aide d'un développement en série analogue au développement ternaire propre d'un réel, mais où la suite $(t_n)_{n\in\mathbb{N}^*}$ est remplacée par une fonction numérique à valeurs dans l'intervalle [0,2].

Pour tout réel x on pose :

$$\varphi(x) = \sum_{n=1}^{+\infty} \frac{1 + \sin(nx)}{3^n}.$$

Étude de l'application φ

Q11. Pour tout x réel, justifier l'écriture : $\varphi(x) = \frac{1}{2} + \operatorname{Im}\left(\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n}\right)$

et en déduire une expression simple de $\varphi(x)$ en fonction de $\sin(x)$ et $\cos(x)$.

- **Q12.** Démontrer que φ est définie et de classe C^1 sur \mathbb{R} .
- Q13. Pour $x \in \mathbb{R}$, en déduire une expression simple de $\sum_{n=1}^{+\infty} \frac{n\cos(nx)}{3^n}$ en fonction de $\cos(x)$.

Indication : on pourra utiliser ce resultat sans le justifier : la derivée de la somme est è égale à la somme des dérivées

Q14. À l'aide de $\int_0^{\pi} \varphi(x) dx$ démontrer que :

$$\int_0^{\pi} \frac{\sin(x)}{10 - 6\cos(x)} \, \mathrm{d}x = \sum_{n=1}^{+\infty} \frac{1}{n3^{n+1}} ((-1)^{n-1} + 1)$$

puis en calculant la somme de la série du second membre, en déduire la valeur de l'intégrale :

$$\int_0^\pi \frac{\sin(x)}{10 - 6\cos(x)} \, \mathrm{d}x \, .$$

Indication : on pourra utiliser ce resultat sans le justifier :
la l'integrale de la somme est è égale à la somme des intégrales

Q15. Retrouver cette valeur par un calcul direct.

CC INP Mathématiques 1 MP (corrigé par Hugues Blanchard et Simon Billouet)

Partie 1 : Développement ternaire

- 1. Montrons que ℓ^{∞} est un sous-espace vectoriel de l'espace vectoriel des suites réelles $\mathbb{R}^{\mathbb{N}}$:
 - On a tout d'abord $\ell^{\infty} \subset \mathbb{R}^{\mathbb{N}}$;
 - La suite nulle étant bornée, elle appartient bien à ℓ^{∞} ;
 - Si $u = (u_n)_{n \in \mathbb{N}^*}$ et $v = (v_n)_{n \in \mathbb{N}^*}$ sont deux suites de ℓ^{∞} , bornées respectivement par M_u et M_v et λ, μ deux réels, l'inégalité triangulaire nous apprend que, pour tout $n \in \mathbb{N}$:

$$|\lambda u_n + \mu v_n| \le |\lambda| M_u + |\mu| M_v$$

ce qui montre que $\lambda u + \mu v$ est bornée, donc dans ℓ^{∞} .

Ainsi, par caractérisation des sous-espaces vectoriels, ℓ^{∞} est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$, donc un espace vectoriel réel.

Montrons maintenant que $u \mapsto ||u||$ est une norme sur ℓ^{∞} :

— Caractère bien défini : si $u \in \ell^{\infty}$,

$$\{|u_n|, n \in \mathbb{N}^*\}$$

est une partie non vide (elle contient $|u_1|$) et majorée (puisque u est bornée) de \mathbb{R} , donc par propriété de la borne supérieure, ||u|| existe.

— **Séparation**: si $u \in \ell^{\infty}$ est telle que ||u|| = 0, cela veut dire que $\sup_{n \in \mathbb{N}^*} |u_n| = 0$, donc que 0 majore tous les $|u_n|$, qui sont des nombres positifs. On a donc :

$$\forall n \in \mathbb{N}^*, \quad |u_n| = 0$$

et par suite, u est la suite nulle.

— Inégalité triangulaire : soit $u, v \in \ell^{\infty}$. On a alors, pour tout $n \in \mathbb{N}^*$:

$$|u_n + v_n| \le |u_n| + |v_n| \le ||u|| + ||v||$$

donc la quantité ||u|| + ||v|| est un majorant de tous les nombres $|u_n + v_n|$, et elle est donc plus grande que le plus petit desdits majorants, à savoir ||u + v||. On a donc bien :

$$||u + v|| \le ||u|| + ||v||$$

— **Homogénéité**: soit $\lambda \in \mathbb{R}$ et $u \in \ell'^{\infty}$. Si $\lambda = 0$, on a $||\lambda u|| = 0 = 0||u||$. Supposons maintenant $\lambda \neq 0$. On a alors, pour tout $n \in \mathbb{N}^*$:

$$|\lambda u_n| = |\lambda||u_n| \le |\lambda|||u||$$

De ce fait, $\|\lambda u\| \leq |\lambda| \|u\|$. Par ailleurs, on a $u = \frac{1}{\lambda}(\lambda u)$, donc:

$$||u|| = ||\frac{1}{\lambda}(\lambda u)|| \leqslant \frac{1}{|\lambda|}||\lambda u||$$

et donc

$$\|\lambda u\| \leqslant \lambda \|u\|$$

On conclut donc à l'égalité

$$\|\lambda u\| = |\lambda| \|u\|$$

ce qui conclut la preuve.

2. Soit $u = (u_n)_{n \in \mathbb{N}^*} \in \ell^{\infty}$, bornée par M. Alors, on a

$$0 \leqslant \frac{|u_n|}{3^n} \leqslant \frac{M}{3^n}$$

par croissances comparées. Or, $\frac{M}{3^n}$ est le terme général d'une série convergente (série géométrique de raison dans]0;1[); par comparaison de séries à termes positifs, la série de terme général u_n converge donc absolument, donc converge.

3. Montrons tout d'abord que σ est bien une forme linéaire sur ℓ^{∞} . σ est bien à valeurs dans \mathbb{R} . Par ailleurs, soit $u = (u_n)_{n \in \mathbb{N}^*}, v = (v_n)_{n \in \mathbb{N}^*} \in \ell^{\infty}$ et $\lambda, \mu \in \mathbb{R}$. On a alors

$$\sigma(\lambda u + \mu v) = \sum_{n=1}^{+\infty} \frac{(\lambda u_n + \mu v_n)}{3^n} = \lambda \left(\sum_{n=1}^{+\infty} \frac{u_n}{3^n}\right) + \mu \left(\sum_{n=1}^{+\infty} \frac{v_n}{3^n}\right) = \lambda \sigma(u) + \mu \sigma(v)$$

par linéarité de la somme d'une série (notons que cette égalité est justifiée par le fait que toutes les séries qui interviennent convergent bien d'après la question précédente). Ainsi, σ est linéaire, et σ est donc bien une forme linéaire.

Montrons maintenant que σ est continue. Soit $u = (u_n)_{n \in \mathbb{N}^*} \in \ell^{\infty}$. Soit $\mathbb{N} \in \mathbb{N}^*$. Alors :

$$\left| \sum_{n=1}^{N} \frac{u_n}{3^n} \right| \le \sum_{n=1}^{N} \frac{|u_n|}{3^n} \le \left(\sum_{n=1}^{N} \frac{1}{3^n} \right) \|u\|$$

Le terme de gauche de cette inégalité converge vers $|\sigma(u)|$, celui de droite converge également car la série de terme général $\frac{1}{3^n}$ converge, pour les mêmes raisons qu'à la question 2. Par conséquent, on peut passer à la limite lorsque $N \to +\infty$, et :

$$|\sigma(u)| \leqslant \left(\sum_{n=1}^{+\infty} \frac{1}{3^n}\right) ||u||$$

et d'après une caractérisation de la continuité des applications linéaires, cela montre que σ est une forme linéaire continue sur ℓ^{∞} .

4. Soit $t=(t_n)_{n\in\mathbb{N}^*}\in T$. Notamment, pour tout $n\in\mathbb{N}^*, 0\leqslant \frac{t_n}{3^n}\leqslant \frac{2}{3^n}$, donc

$$0 \leqslant \sigma(t) \leqslant \sum_{n=1}^{+\infty} \frac{2}{3^n}$$

et cette dernière somme de série vaut 1 car, pour $N \in \mathbb{N}^*$,

$$\sum_{n=1}^{N} \frac{2}{3^n} = 2 \frac{1 - 3^{-N}}{2} \to 1$$

Donc $\sigma(t) \in [0;1]$.

5. On a

$$\sigma(\tau) = \frac{\tau_1}{3^1} = \frac{1}{3}$$

$$\sigma(\tau') = \sum_{n=2}^{+\infty} \frac{2}{3^n} = \sum_{n=1}^{+\infty} \frac{2}{3^n} - \frac{2}{3} = \frac{1}{3}$$

Notamment, l'application σ n'est pas injective sur T.

6. Il s'agit de montrer que t(x) est à valeurs dans $\{0, 1, 2\}$. Notons que pour tout $n \in \mathbb{N}^*, t_n(x)$ est un entier relatif comme différence d'entiers relatifs. Par ailleurs, pour $n \in \mathbb{N}^*$, on a

$$3^n x - 1 < |3^n x| \le 3^n x$$

 $_{
m et}$

$$3^{n-1}x - 1 < |3^{n-1}x| \le 3^{n-1}x$$

d'où (à chaque fois on somme une inégalité large et une inégalité stricte, donc on a bien une inégalité stricte)

$$3^{n}x - 1 - 3(3^{n-1}x) = -1 < t_{n}(x) < 3^{n}x - 3(3^{n-1}x - 1) = 3$$

Et puisque $t_n(x)$ est entier, on a bien $t_n(x) \in \{0, 1, 2\}$. Donc $t(x) \in T$.

7. Tout d'abord, $y_n - x_n = \frac{1}{3^n} \to 0$. De plus, pour $n \ge 2$,

$$x_n - x_{n-1} = \frac{\lfloor 3^n x \rfloor}{3^n} - \frac{\lfloor 3^{n-1} x \rfloor}{3^{n-1}} = \frac{t_n(x)}{3^n} \geqslant 0$$

donc $(x_n)_{n\in\mathbb{N}^*}$ est croissante, et, pour $n\geqslant 2$,

$$y_n - y_{n-1} = \frac{t_n(x)}{3^n} + \frac{1}{3^n} - \frac{1}{3^{n-1}} = \frac{t_n(x) - 2}{3^n} \le 0$$

donc $(y_n)_{n\in\mathbb{N}^*}$ est décroissante. Ainsi, les suites $(x_n)_{n\in\mathbb{N}^*}$ et $(y_n)_{n\in\mathbb{N}^*}$ sont adjacentes. Puisqu'on a l'encadrement, valable pour tout $n\in\mathbb{N}^*$:

$$3^n x - 1 \leqslant |3^n x| \leqslant 3^n x$$

on a donc

$$1 - \frac{1}{3^n} \leqslant x_n \leqslant 1$$

et par théorème d'encadrement, $(x_n)_{n\in\mathbb{N}^*}$ converge donc vers x, et $(y_n)_{n\in\mathbb{N}^*}$ de même puisque $(x_n)_{n\in\mathbb{N}^*}$ et $(y_n)_{n\in\mathbb{N}^*}$ sont adjacentes. Par ailleurs, pour $\mathbb{N}\in\mathbb{N}^*$:

$$\sum_{n=1}^{N} \frac{t_n(x)}{3^n} = \frac{t_1(x)}{3} + \sum_{n=1}^{N} \frac{t_{n+1}(x)}{3^{n+1}} = \frac{\lfloor 3x \rfloor}{3} - \lfloor x \rfloor + \sum_{n=1}^{N} (x_{n+1} - x_n) = x_1 - 0 + x_{N+1} - x_1 = x_{N+1}$$

En faisant tendre N vers $+\infty$, on obtient donc :

$$\sum_{n=1}^{+\infty} \frac{t_n(x)}{3^n} = x$$

Partie 2 : Étude d'une fonction définie par une série

- 11. Notons $f_n: \mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{1+\sin(nx)}{3^n}$.
 - Les f_n sont de classe \mathcal{C}^1 comme composition, somme et quotient de fonctions de classe \mathcal{C}^1 .
 - Comme sin varie entre -1 et 1, $||f_n||_{\infty} = \frac{2}{3^n}$. Par ailleurs, $\sum_{n\geqslant 1} \frac{2}{3^n}$ converge (c'est une série géométrique de raison $\frac{1}{3}$). Donc $\sum_{n\geqslant 1} f_n$ converge normalement, donc simplement, sur \mathbb{R} .
 - Pour tout $x \in \mathbb{R}$, $f'_n(x) = \frac{n\cos(nx)}{3^n}$ donc $||f||_{\infty} = \frac{n}{3^n}$. Or, $\frac{n}{3^n} = o\left(\frac{1}{n^2}\right)$ par croissance comparée. Comme $\sum_{n\geqslant 1}\frac{1}{n^2}$ est une série positive et convergente (c'est une série de Riemann d'exposant strictement plus grand que 1), par comparaison, $\sum_{n\geqslant 1}\frac{n}{3^n}$ converge. Donc $\sum_{n\geqslant 1}f'_n$ converge normalement, donc uniformément, sur \mathbb{R} .

D'après le théorème de dérivation d'une série, φ est donc bien définie sur $\mathbb R$ et est de classe $\mathcal C^1$.

12. Notons que, pour tout $x \in \mathbb{R}$:

$$\left| \frac{\mathrm{e}^{\mathrm{i} n x}}{3^n} \right| \leqslant \frac{1}{3^n}$$

De même que dans la question 2, la série de fonctions $x \mapsto \sum_{n\geqslant 1} \frac{\mathrm{e}^{\mathrm{i}nx}}{3^n}$ converge donc simplement. Notamment, sa partie imaginaire converge simplement. Soit maintenant $x \in \mathbb{R}$ (fixé pour le reste de la question) :

$$\operatorname{Im}\left(\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n}\right) = \sum_{n=1}^{+\infty} \operatorname{Im}\left(\frac{e^{inx}}{3^n}\right) = \sum_{n=1}^{+\infty} \frac{\sin(nx)}{3^n}$$

D'autre part, par le même calcul qu'à la question 4,

$$\sum_{n=1}^{+\infty} \frac{1}{3^n} = \frac{1}{2}$$

On obtient donc bien

$$\varphi(x) = \sum_{n=1}^{+\infty} \frac{1}{3^n} + \sum_{n=1}^{+\infty} \frac{\sin(nx)}{3^n} = \frac{1}{2} + \operatorname{Im}\left(\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n}\right)$$

Enfin, par somme d'une série géométrique convergente et de raison différente de 1 :

$$\sum_{n=1}^{+\infty} \frac{e^{inx}}{3^n} = \frac{e^{ix}}{3\left(1 - \frac{e^{ix}}{3}\right)} = \frac{e^{ix}\left(1 - \frac{e^{-ix}}{3}\right)}{3\left(\left(1 - \frac{\cos(x)}{3}\right)^2 + \frac{\sin^2(x)}{9}\right)} = \frac{3e^{ix} - 1}{10 - 6\cos(x)}$$

On obtient donc:

$$\forall x \in \mathbb{R}, \quad \varphi(x) = \frac{1}{2} + \frac{3\sin(x)}{10 - 6\cos(x)}$$

13. La question 11 nous a permis de vérifier le théorème de dérivation d'une série de fonctions terme à terme. Ainsi, pour tout $x \in \mathbb{R}$:

$$\varphi'(x) = \sum_{n=1}^{+\infty} \frac{n\cos(nx)}{3^n}$$

D'autre part, en dérivant à vue l'expression obtenue à la question précédente, on trouve que, pour $x \in \mathbb{R}$:

$$\varphi'(x) = \frac{3\cos(x)(10 - 6\cos(x)) - 3\sin(x)6\sin(x)}{(10 - 6\cos(x))^2} = \frac{-18 + 30\cos(x)}{(10 - 6\cos(x))^2}$$

On en déduit donc que, pour $x \in \mathbb{R}$

$$\sum_{n=1}^{+\infty} \frac{n\cos(nx)}{3^n} = \frac{-18 + 30\cos(x)}{(10 - 6\cos(x))^2}$$

14. On a montré en question 11 que $\sum_{n\geq 1} f_n$ converge normalement sur \mathbb{R} . Cette série converge

donc uniformément. Par ailleurs, les f_n , étant de classe \mathcal{C}^1 sur \mathbb{R} , sont notamment continues sur $[0, \pi]$. Par théorème d'intégration d'une série terme à terme :

$$\int_0^{\pi} \left(\sum_{n=1}^{+\infty} f_n(x) \right) dx = \sum_{n=1}^{+\infty} \left(\int_0^{\pi} f_n(x) dx \right)$$

donc

$$\int_0^{\pi} \left(\sum_{n=1}^{+\infty} f_n(x) \right) dx = \sum_{n=1}^{+\infty} \left[\frac{x}{3^n} - \frac{\cos(nx)}{n3^n} \right]_0^{\pi} = \sum_{n=1}^{+\infty} \left(\frac{\pi}{3^n} + \frac{(-1)^{n-1} + 1}{n3^n} \right)$$

Or, $\sum_{n=1}^{+\infty} \frac{\pi}{3^n} = \pi \sum_{n=1}^{+\infty} \frac{1}{3^n} = \frac{\pi}{2}$ d'après la question 12, donc :

$$\int_0^\pi \frac{\sin(x)}{10 - 6\cos(x)} \, \mathrm{d}x = \int_0^\pi \frac{\varphi(x) - \frac{1}{2}}{3} \, \mathrm{d}x = \frac{1}{3} \int_0^\pi \varphi(x) \, \mathrm{d}x - \frac{\pi}{6} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1} + 1}{n3^{n+1}}$$

Enfin, par développement en série entière, on a, pour tout $x \in]-1,1[$, $\ln(1+x)=\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}}{n}x^n$, donc

$$\int_0^{\pi} \frac{\sin(x)}{10 - 6\cos(x)} \, \mathrm{d}x = \frac{1}{3} \left(\ln\left(1 + \frac{1}{3}\right) - \ln\left(1 - \frac{1}{3}\right) \right) = \frac{1}{3} \ln(2)$$

15. Avec le changement de variable (licite, car de classe C^1) $\begin{cases} u = \cos(x) \\ du = -\sin(x) dx \end{cases}$, on obtient que

$$\int_0^\pi \frac{\sin(x)}{10 - 6\cos(x)} \, \mathrm{d}x = \int_1^{-1} \frac{-1}{10 - 6u} \, \mathrm{d}u = \left[\frac{1}{6}\ln(10 - 6u)\right]_1^{-1} = \frac{1}{3}\ln(2)$$