http://myismail.net

Devoir Maison: Déterminants

Calcul du déterminant de Cauchy CNC 2019

On considère un entier $n \ge 2$ et deux suites finies $(a_k)_{1 \le k \le n}$ et $(b_k)_{1 \le k \le n}$ de réels telles que $a_i + b_j \ne 0$ pour tout couple $(i,j) \in \{1,\ldots,n\}^2$. Pour tout entier m tel que $0 < m \le n$, le déterminant de Cauchy d'ordre m, associé aux familles $(a_k)_{1 \le k \le n}$ et $(b_k)_{1 \le k \le n}$, est le nombre, noté Δ_m , égal au déterminant de la matrice $\left(\frac{1}{a_i + b_j}\right)_{1 \le i, i \le m}$.

2.1. On suppose qu'il existe $(i_1, i_2) \in \{1, \dots, n\}^2$, avec $i_1 \neq i_2$, tel que $a_{i_1} = a_{i_2}$. Justifier que $\Delta_n = 0$.

On suppose désormais que les réels a_1, \ldots, a_n sont deux à deux **distincts** et on considère la fraction rationnelle

$$R = \frac{\prod_{j=1}^{n-1} (X - b_j)}{\prod_{k=1}^{n} (X + a_k)}.$$

- **2.2.** Justifier que les polynômes $\prod_{k=1}^{n-1} (X b_k)$ et $\prod_{k=1}^{n} (X + a_k)$ de $\mathbb{R}[X]$ sont premiers entre eux.
- 2.3. Décomposition en éléments simples de la fraction R
 - $\bf 2.3.1.$ Préciser les pôles de la fraction rationnelle R et vérifier qu'ils sont tous simples.
- **2.3.2.** En déduire que la décomposition en éléments simples, dans $\mathbb{R}(X)$, de la fraction R est de la forme $R = \sum_{k=1}^{n} \frac{\alpha_k}{X + a_k}$ en précisant les expressions des réels α_k en fonction des a_k et des b_k .
- **2.4.** Application au calcul de Δ_n

2.4.1. Montrer que
$$\alpha_n \Delta_n = \begin{vmatrix} \frac{1}{a_1 + b_1} & \cdots & \frac{1}{a_1 + b_{n-1}} & \frac{1}{a_1 + b_n} \\ \vdots & & \vdots & \vdots \\ \frac{1}{a_{n-1} + b_1} & \cdots & \frac{1}{a_{n-1} + b_{n-1}} & \frac{1}{a_{n-1} + b_n} \\ R(b_1) & \cdots & R(b_{n-1}) & R(b_n) \end{vmatrix}$$
.

- **2.4.2.** En déduire que $\alpha_n \Delta_n = R(b_n) \Delta_{n-1}$.
- **2.4.3.** Calculer Δ_2 puis montrer que, pour tout $n \ge 2$, $\Delta_n = \frac{\prod_{1 \le i < j \le n} (a_j a_i)(b_j b_i)}{\prod_{1 \le i,j \le n} (a_i + b_j)}$.

- 2.1 Si $a_{i_1}=a_{i_2}$ avec $i_1\neq i_2$, alors les deux lignes correspondantes dans Δ_n sont égales et donc $\Delta_n=0$.
- 2.2 Les deux polynômes sont scindés, l'intersection de leurs ensembles des racines est vide, puisque $a_i \neq -b_j$ pour tout couple $(i,j) \in \{1,2,...,n\}^2$, donc ils sont premiers entre eux
- 2.3 Décomposition en élément simple de la fraction R
 - 2.3.1 Les pôles de R sont les racines du polynôme $\prod_{k=1}^{n} (X + a_k)$, c'est-à-dire les $(-a_k)_{1 \le k \le n}$ et comme elles sont distinctes, alors R admet des pôles simples.
 - 2.3.2 Puisque R admet des pôles simples qui sont les $(-a_k)_{1 \le k \le n}$, et $\deg((X b_1)...(X b_{n-1})) < \deg((X + a_1)..(X + a_n))$, la partie entière de R est nulle. R admet donc effectivement une décomposition en éléments simples de la forme

$$R = \sum_{k=1}^{n} \frac{\alpha_k}{X + a_k}.$$

Les α_k sont des réels déterminés par la méthode usuelle dans le cas d'une fraction à pôles simples. En effet, $\alpha_k = \lim_{x \to -a_k} (x+a_k) R(x)$, c'est-à-dire

$$\alpha_k = \frac{\prod_{j=1}^{n-1} (-a_k - b_j)}{\prod\limits_{j \neq k} (-a_k + a_j)} = \frac{\prod\limits_{j=1}^{n-1} (a_k + b_j)}{\prod\limits_{j \neq k} (a_k - a_j)}.$$

- 2.4 Application au calcul de Δ_n
 - 2.4.1 On note $L_1,...,L_n$ les lignes de Δ_n . On effectue sur Δ_n la transformation $L_n \leftarrow \sum_{i=1}^n \alpha_i L_i$ avec $\alpha_n \neq 0$. On obtient $\Delta_n = \frac{1}{\alpha_n} D_n$ où D_n est le déterminant obtenu en remplaçant la dernière ligne de Δ_n par la ligne $(R(b_1),R(b_2),...,R(b_n))$:

$$\alpha_n \Delta_n = \begin{vmatrix} \frac{1}{a_1 + b_1} & \dots & \frac{1}{a_1 + b_{n-1}} & \frac{1}{a_n + b_1} \\ \vdots & & \vdots & \vdots \\ \frac{1}{a_{n-1} + b_1} & \dots & \frac{1}{a_{n-1} + b_{n-1}} & \frac{1}{a_n + b_{n-1}} \\ R(b_1) & \dots & R(b_{n-1}) & R(b_n) \end{vmatrix}$$

- 2.4.2 Il est clair que $R(b_1) = ... = R(b_{n-1}) = 0$, donc en développant D_n suivant sa dernière ligne, on obtient la relation : $\alpha_n \Delta_n = R(b_n) \Delta_{n-1}$.
- 2.4.3

$$\Delta_2 = \begin{vmatrix} \frac{1}{a_1 + b_1} & \frac{1}{a_1 + b_2} \\ \frac{1}{a_2 + b_1} & \frac{1}{a_2 + b_2} \end{vmatrix} = \frac{1}{(a_1 + b_1)(a_2 + b_2)} - \frac{1}{(a_1 + b_2)(a_2 + b_1)}$$
$$= \frac{(a_1 - a_2)(b_1 - b_2)}{(a_1 + b_1)(a_2 + b_2)(a_1 + b_2)(a_2 + b_1)}.$$

On sait que $\Delta_n = \frac{R(b_n)}{\alpha_n} \Delta_{n-1}$, avec $\alpha_n = \frac{\prod\limits_{j=1}^{n-1} (a_n + b_j)}{\prod\limits_{j \neq n} (a_n - a_j)}$. D'où :

$$\Delta_n = \left[\prod_{k=1}^{n-1} \frac{b_n - b_k}{b_n + a_k} \right] \left[\prod_{k=1}^{n-1} \frac{a_n - a_k}{a_n + b_k} \right] \frac{\Delta_{n-1}}{a_n + b_n}$$

et comme $\Delta_1=\frac{1}{a_1+b_1}$, on en déduit par récurrence sur n la formule fournie par l'énoncé :

$$\Delta_n = \frac{\prod\limits_{1 \le i < j \le n} (a_j - a_i)(b_j - b_i)}{\prod\limits_{1 \le i, j \le n} (a_i + b_j)}$$