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Equations Différentielles

Probleme — Equations différentielles linéaires d’ordre 2 a coefficients non constants

On étudie dans ce probleme des équations différentielles linéaires d’ordre 2 & coefficients non constants, qui
ne rentrent donc pas dans le cadre du cours. On cherche les solutions a valeurs réelles.

Partie A — Un exemple

On s’intéresse dans cette partie aux équations
(€) : (shz)y" + (2cha)y + (shz)y = 0.
et
(€ : (sha)y + (cha)y = 0.

On étudie ces équations sur un intervalle I égal a R ou R (et on cherche les solutions & valeurs réelles) :
il n'y a donc pas de probleme de raccord.
A.1 Résoudre 'équation (') sur I.

A.2 Montrer qu'une fonction deux fois dérivable f est solution de & sur I si et seulement si g : z +—
f'(z) + 7= f(z) est solution de I'équation &' sur I.

A.3 Résoudre € sur I.
Partie B — Entrelacement de zéros

On fixe deux fonctions continues p et ¢, d’'un intervalle I dans R.
On considere les équations différentielles

(&) ¥ +pt)y=0
et
(5q> 3/// +q(t)y=0

On se donne deux solutions respectives f et g de ces équations.
Pour tout t € I, on introduit le Wronskien a I'instant ¢ :




B.1 Douner, pour tout t € I, une expression simple de W' (t) (en fonction de f(t), (t), p(t) et ¢(t)).

B.2 On suppose ici p < ¢ (i.e. p(t) < g(t) pour tout ¢ € I). On suppose f nulle en a et f (ot & < ), et a
valeurs strictement positives sur |, f].
a En admettant que le résultat sur les problemes de Cauchy a l'ordre 2 s'étend a ce type d’équations,
montrer que f'(a) et f'(5) sont non nuls.
b En revenant a la définition du nombre dérivé d'une fonction (comme limite d'un taux d’accroissement),
montrer que f'(a) > 0 et f'(§) < 0.
¢ Montrer par 'absurde, en utilisant le Wronskien, qu'il existe un point y de [a, 5] ot g s’annule.

B.3
a Montrer que si ¢ > 1, alors g s’annule au moins une fois sur tout segment de longueur 7.
b Montrer que si ¢ < 1, et si g n'est pas nulle, alors ¢ s’annule au plus une fois sur tout segment de
longueur strictement inférieure a 7.

Partie C — L’équation de Bessel

On fixe un réel ), et on considére sur RY, 'équation différentielle (de Bessel)
1 X
€) y'+-y'+ (1—2>y:0.
I T

C.1 Montrer que f, fonction deux fois dérivable de R’ dans R, est solution de & si et seulement si g :
f(z)y/x est solution de I'équation différentielle

2_
) z”+<1-4A 1>z:0

A

C.2 Soit f une solution non nulle de €. Déduire de ce qui précede que si A > % (resp. A < %), alors f sannule
au plus (resp. au moins) une fois sur un segment de longueur 7 (resp. de longueur strictement inférieure a 7).



Corrigé

Partie A — Un exemple

A.1 La fonction 1/sh est solution évidente non nulle de £ sur I, donc l'ensemble des solutions cherché est
{2, X €R}.
A.2 g est dérivable sur I puisque f est deux fois dérivable, et pour tout = € I :

I@) = 5@+ g f@) D @) = )+ g @) - @)
On a donc, pour tout = € I,
! _ " / 1 ’ Ch2 xT
(shz)g' (z) + (cha)g(x) = sh(z)f"(z)+ ch(z)f (z) — mf(w) + ch(z) f'(z) bh(l‘)f( )

= sh(z)f"(z) + 2ch(z) f'(z) + W
= sh(z)f"(z) + 2ch(z) f'(z) + sh(z) f(z),

d’ou le résultat.

A.3 D’apres ce qui précede, les solutions de € sur I sont les solutions (sur I) de

1 A
g// /+ — y=-C
E) v+ a5@? " amm
pour un certain réel .
L’équation homogene associée a (£”), équivalente & £, a pour solution générale = — Sh(x) ol mu décrit R.
Pour en trouver une solution particuliere, on utilise la méthode de variation de la constante : une solution de

E" est x — S(l’;(é)), ou C est une primitive de la fonction constante de valeur p : le choix C' : x — ux convient

donc.
Ainsi la solution générale de & est-elle
A+ px
— ,
sh(z)

ou A et u décrivent R.

Partie B — Entrelacement de zéros

B.1 W est bien dérivable, puisque f et g sont deux fois dérivables, et, pour tout ¢t € I :

W'ty = f'(t)g'(t)+ f()g"(t) = f"(t)g(t) — f'(t)g'(t)
= fg" @)~ f"t)g(t)
= (p(t) —q(t))f(t)g(t).

B.2
a On sait que f(«) = 0. Si on avait en outre f'(«) =0, alors f serait I'unique solution & ce probléme de
Cauchy, et serait donc la fonction nulle, ce qui est exclu : f'(a) # 0 et, de méme, f'(8) # 0.
b Soit ¢t €]a, B]. On a d’apres les hypotheéses w > 0, donc, en passant a la limite lorsque ¢ tend
vers «, f'(a) > 0. Comme f'(a) # 0, on a bien f/'(a) > 0, et, de méme, f'(8) < 0.



¢ Supposons donc que g ne s’annule pas sur [«, 5]. Quitte & considérer —g, on peut supposer que g
ne prenne que des valeurs strictement positives. Dans ce cas, le Wronskien W est décroissant (sa dérivée est
négative), or W(a) = — f'(a)g(a) < 0et W(B) = —f'(8)g9(8) > 0, ce qui est absurde : g s’annule nécessairement.

B.3
a Supposons ¢ > 1. On applique le résultat précédent pour p constante de valeur 1 : les solutions de &,
sont les x — Acos(t —tg), olt A et ty décrivent R. Pour tout segment [, 5] de longueur 7, on peut donc trouver
une solution de &, comme en B.2, & savoir ¢ — sin(¢ — «), prouvant ainsi que g s’annule nécessairement sur ce
segment.
b Supposons que ¢ < 1, que g soit non nulle, et que pourtant g s’annule au moins deux fois sur un segment
[, B] de longueur strictement inférieure & 7. Quitte a réduire ce segment, on peut supposer que g s’annule en
a et B, et qu’elle ne s’annule pas entre ces deux points.
D’aprés B.2, en échangeant les rdles de f et de g (et de p et de ¢), toute solution de y” + y = 0 devrait

s’annuler sur [a, (], de qui est faux pour ¢ — cos (t - QT'HB) : g S’annule au plus une fois sur [«, 3].
Partie C — L’équation de Bessel

C.1 g est deux fois dérivable sur R car f et la fonction racine carrée le sont. De plus, pour tout = € R} :

J(@) = f@)Va + ;f&%

et
(@) flz)

T 4x3/2°

g"(x) = f"(@)Vz +

B

donc

~

o+ (1- 25 ) = pove D2 I8 (1P v

va (5@ + T4 (1-2) s@),

d’ou le résultat demandé.

C.2 Bien stir, f et g ont le méme lieu d’annulation. On peut appliquer les résultats de B.3 & g, ou ¢(x) =

(1 — 421?) sl A > %, alors ¢ < 1, donc g (et, partant f) s’annule au pluss une fois sur un segment de

longueur 7. Si A < %, alors ¢ > 1, donc g (et, partant f) s’annule au moins une fois sur un segment de longueur
strictement inférieure a .



