
Problème – Équations différentielles linéaires d’ordre 2 à coefficients non constants

On étudie dans ce problème des équations différentielles linéaires d’ordre 2 à coefficients non constants, qui
ne rentrent donc pas dans le cadre du cours. On cherche les solutions à valeurs réelles.

Partie A – Un exemple

On s’intéresse dans cette partie aux équations

(E) : (shx)y′′ + (2 chx)y′ + (shx)y = 0.

et
(E ′) : (shx)y′ + (chx)y = 0.

On étudie ces équations sur un intervalle I égal à R∗+ ou R∗− (et on cherche les solutions à valeurs réelles) :
il n’y a donc pas de problème de raccord.

A.1 Résoudre l’équation (E ′) sur I.

A.2 Montrer qu’une fonction deux fois dérivable f est solution de E sur I si et seulement si g : x 7→
f ′(x) + 1

th xf(x) est solution de l’équation E ′ sur I.

A.3 Résoudre E sur I.

Partie B – Entrelacement de zéros

On fixe deux fonctions continues p et q, d’un intervalle I dans R.
On considère les équations différentielles

(Ep) y′′ + p(t)y = 0

et
(Eq) y′′ + q(t)y = 0

On se donne deux solutions respectives f et g de ces équations.
Pour tout t ∈ I, on introduit le Wronskien à l’instant t :

W (t) =

∣∣∣∣f(t) g(t)
f ′(t) g′(t)

∣∣∣∣ = f(t)g′(t)− f ′(t)g(t).
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On fixe un réel λ, et on considère sur R∗+ l’équation différentielle (de Bessel)

(E) y′′ +
1

x
y′ +

(
1− λ2

x2

)
y = 0.

C.1 Montrer que f , fonction deux fois dérivable de R∗+ dans R, est solution de E si et seulement si g : x 7→
f(x)
√
x est solution de l’équation différentielle

(E ′) z′′ +

(
1− 4λ2 − 1

4x2

)
z = 0

C.2 Soit f une solution non nulle de E . Déduire de ce qui précède que si λ > 1
2 (resp. λ 6 1

2 ), alors f s’annule
au plus (resp. au moins) une fois sur un segment de longueur π (resp. de longueur strictement inférieure à π).

Partie C – L’équation de Bessel

B.1 Donner, pour tout t ∈ I, une expression simple de W ′(t) (en fonction de f(t), g(t), p(t) et q(t)).

B.2 On suppose ici p 6 q (i.e. p(t) 6 q(t) pour tout t ∈ I). On suppose f nulle en α et β (où α < β), et à
valeurs strictement positives sur ]α, β[.

a En admettant que le résultat sur les problèmes de Cauchy à l’ordre 2 s’étend à ce type d’équations,
montrer que f ′(α) et f ′(β) sont non nuls.

b En revenant à la définition du nombre dérivé d’une fonction (comme limite d’un taux d’accroissement),
montrer que f ′(α) > 0 et f ′(β) < 0.

c Montrer par l’absurde, en utilisant le Wronskien, qu’il existe un point γ de [α, β] où g s’annule.

B.3
a Montrer que si q > 1, alors g s’annule au moins une fois sur tout segment de longueur π.
b Montrer que si q 6 1, et si g n’est pas nulle, alors g s’annule au plus une fois sur tout segment de

longueur strictement inférieure à π.



Partie A – Un exemple

A.1 La fonction 1/ sh est solution évidente non nulle de E ′ sur I, donc l’ensemble des solutions cherché est
{ λsh , λ ∈ R}.

A.2 g est dérivable sur I puisque f est deux fois dérivable, et pour tout x ∈ I :

g′(x) = f ′′(x) +
1

thx
f ′(x)− th′(x)

th2 x
f(x) = f ′′(x) +

1

thx
f ′(x)− 1

sh2 x
f(x).

On a donc, pour tout x ∈ I,

(shx)g′(x) + (chx)g(x) = sh(x)f ′′(x) + ch(x)f ′(x)− 1

sh(x)
f(x) + ch(x)f ′(x) +

ch2 x

sh(x)
f(x)

= sh(x)f ′′(x) + 2 ch(x)f ′(x) +
ch2 x− 1

sh(x)
f(x)

= sh(x)f ′′(x) + 2 ch(x)f ′(x) + sh(x)f(x),

d’où le résultat.

A.3 D’après ce qui précède, les solutions de E sur I sont les solutions (sur I) de

(E ′′) y′ +
1

th(x)
y =

λ

sh(x)
,

pour un certain réel λ.
L’équation homogène associée à (E ′′), équivalente à E ′, a pour solution générale x 7→ µ

sh(x) , où mu décrit R.

Pour en trouver une solution particulière, on utilise la méthode de variation de la constante : une solution de

E ′′ est x 7→ C(x)
sh(x) , où C est une primitive de la fonction constante de valeur µ : le choix C : x 7→ µx convient

donc.
Ainsi la solution générale de E est-elle

x 7→ λ+ µx

sh(x)
,

où λ et µ décrivent R.

Partie B – Entrelacement de zéros

B.1 W est bien dérivable, puisque f et g sont deux fois dérivables, et, pour tout t ∈ I :

W ′(t) = f ′(t)g′(t) + f(t)g′′(t)− f ′′(t)g(t)− f ′(t)g′(t)
= f(t)g′′(t)− f ′′(t)g(t)

= (p(t)− q(t))f(t)g(t).

B.2
a On sait que f(α) = 0. Si on avait en outre f ′(α) = 0, alors f serait l’unique solution à ce problème de

Cauchy, et serait donc la fonction nulle, ce qui est exclu : f ′(α) 6= 0 et, de même, f ′(β) 6= 0.

b Soit t ∈]α, β[. On a d’après les hypothèses f(t)−f(α)
t−α > 0, donc, en passant à la limite lorsque t tend

vers α, f ′(α) > 0. Comme f ′(α) 6= 0, on a bien f ′(α) > 0, et, de même, f ′(β) < 0.

Corrigé



c Supposons donc que g ne s’annule pas sur [α, β]. Quitte à considérer −g, on peut supposer que g
ne prenne que des valeurs strictement positives. Dans ce cas, le Wronskien W est décroissant (sa dérivée est
négative), or W (α) = −f ′(α)g(α) < 0 et W (β) = −f ′(β)g(β) > 0, ce qui est absurde : g s’annule nécessairement.

B.3
a Supposons q > 1. On applique le résultat précédent pour p constante de valeur 1 : les solutions de Ep

sont les x 7→ A cos(t− t0), où A et t0 décrivent R. Pour tout segment [α, β] de longueur π, on peut donc trouver
une solution de Ep comme en B.2, à savoir t 7→ sin(t− α), prouvant ainsi que g s’annule nécessairement sur ce
segment.

b Supposons que q 6 1, que g soit non nulle, et que pourtant g s’annule au moins deux fois sur un segment
[α, β] de longueur strictement inférieure à π. Quitte à réduire ce segment, on peut supposer que g s’annule en
α et β, et qu’elle ne s’annule pas entre ces deux points.

D’après B.2, en échangeant les rôles de f et de g (et de p et de q), toute solution de y′′ + y = 0 devrait

s’annuler sur [α, β], de qui est faux pour t 7→ cos
(
t− α+β

2

)
: g s’annule au plus une fois sur [α, β].

Partie C – L’équation de Bessel

C.1 g est deux fois dérivable sur R∗+ car f et la fonction racine carrée le sont. De plus, pour tout x ∈ R∗+ :

g′(x) = f ′(x)
√
x+

f(x)

2
√
x
,

et

g′′(x) = f ′′(x)
√
x+

f ′(x)√
x
− f(x)

4x3/2
,

donc

g′′(x) +

(
1− 4λ2 − 1

4x2

)
g(x) = f ′′(x)

√
x+

f ′(x)√
x
− f(x)

4x3/2
+

(
1− 4λ2 − 1

4x2

)
f(x)
√
x

=
√
x

(
f ′′(x) +

f ′(x)

x
+

(
1− λ2

x2

)
f(x)

)
,

d’où le résultat demandé.

C.2 Bien sûr, f et g ont le même lieu d’annulation. On peut appliquer les résultats de B.3 à g, où q(x) =(
1− 4λ2−1

4x2

)
: si λ > 1

2 , alors q 6 1, donc g (et, partant f) s’annule au pluss une fois sur un segment de

longueur π. Si λ 6 1
2 , alors q > 1, donc g (et, partant f) s’annule au moins une fois sur un segment de longueur

strictement inférieure à π.


