
Exercice
(Noté 4 points sur 20)

On pose 𝐼0 = ∫
+∞

0
e−3𝑥𝑑𝑥 et pour tout entier naturel non nul 𝑛, 𝐼𝑛 = ∫

+∞

0
𝑥𝑛e−3𝑥𝑑𝑥.

1. a) Montrer que 𝐼0 est une intégrale convergente et que 𝐼0 = 1
3 .

b) Vérifier que, pour tout entier naturel 𝑛 , 𝑥𝑛e−3𝑥 = 𝑜 ( 1
𝑥2 ) quand 𝑥 tend vers +∞.

c) En déduire que, pour tout entier naturel 𝑛, 𝐼𝑛 est une intégrale convergente.

2. Montrer, en utilisant une intégration par parties, que pour tout entier naturel 𝑛 et pour tout réel positif 𝐴,

∫
𝐴

0
𝑥𝑛+1e−3𝑥𝑑𝑥 = −𝐴𝑛+1

3
e−3𝐴 + (𝑛 + 1)

3
∫

𝐴

0
𝑥𝑛e−3𝑥𝑑𝑥

3. Montrer que, pour tout entier naturel 𝑛 , 𝐼𝑛+1 = (𝑛+1)
3 𝐼𝑛.

4. En déduire que, pour tout entier naturel 𝑛 , 𝐼𝑛 = 𝑛!
3𝑛+1 .

5. Soit 𝑋 la variable aléatoire de densité la fonction 𝑓 définie par,

𝑓(𝑥) =
⎧{
⎨{⎩

0 si 𝑥 ≤ 0

9
4 (1 + 𝑥)e−3𝑥 si 𝑥 > 0

a) Déterminer l’espérance 𝔼(𝑋) de la variable aléatoire 𝑋.

b) Déterminer la variance 𝕍(𝑋) de la variable aléatoire 𝑋.
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Problème.

Pour tout réel strictement positif 𝑡 , on considère les deux fonctions 𝑓𝑡 et 𝑔𝑡 qui sont définies sur ℝ par,

𝑓𝑡(𝑥) = e−𝑡 𝑥2
2 et 𝑔𝑡(𝑥) =

⎧{
⎨{⎩

0 si 𝑥 ≤ 0

𝑡𝑥𝑓𝑡(𝑥) si 𝑥 > 0
.

On rappelle que ∫
+∞

0
e− 𝑥2

2 𝑑𝑥 = √𝜋
2

.

Dans toute la suite du problème, on prend 𝑡 un réel strictement positif

Partie 1 : Etude d’une variable aléatoire

On rappelle qu’une fonction 𝑓 de ℝ vers ℝ continue par morceaux est une densité de probabilité si 𝑓 est positive

sur ℝ, l’ensemble des points de discontinuité de 𝑓 est une partie finie de ℝ, 𝑓 est intégrable sur ℝ et ∫
+∞

−∞
𝑓(𝑥)𝑑𝑥 = 1.

1. a) Montrer que, pour tout entier 𝑛 tel que 𝑛 ≥ 0, l’intégrale 𝐼𝑛 = ∫
+∞

0
𝑥𝑛𝑓𝑡(𝑥)𝑑𝑥 est convergente.

b) Déterminer 𝐼0 en fonction de 𝑡, (on pourra faire le changement de variable (𝑢 = 𝑥
√

𝑡 ).

c) Déterminer 𝐼1 sous forme d’une expression simple de 𝑡.

2. a) Montrer que, pour tout entier 𝑛 tel que 𝑛 ≥ 2 et pour tout réel 𝑢 ∈ [0, +∞[,

∫
𝑢

0
𝑥𝑛𝑓𝑡(𝑥)𝑑𝑥 = −𝑢𝑛−1

𝑡
𝑓𝑡(𝑢) + 𝑛 − 1

𝑡
∫

𝑢

0
𝑥𝑛−2𝑓𝑡(𝑥)𝑑𝑥

b) En déduire que, pour tout entier 𝑛 tel que 𝑛 ≥ 2, 𝐼𝑛 = 𝑛−1
𝑡 𝐼𝑛−2.

3. a) Montrer que 𝑔𝑡 est une densité de probabilité. Dans la suite, on note 𝑋𝑡 une variable aléatoire définie sur

un espace probabilisé (Ω, 𝐴, ℙ) admettant 𝑔𝑡 , pour densité.

b) Déterminer 𝐹𝑡 la fonction de répartition de la variable aléatoire 𝑋𝑡 .

c) Montrer que la variable aléatoire 𝑋𝑡 admet une espérance 𝔼 (𝑋𝑡) et déterminer sa valeur.

d) Montrer que la variable aléatoire 𝑋𝑡 admet une variance 𝕍 (𝑋𝑡) et déterminer sa valeur.

e) Déterminer la valeur de 𝑡 pour que l’écart type 𝜎 (𝑋𝑡) de 𝑋𝑡 soit egal à 1.

4. Pour tout entier naturel 𝑘, on note les deux événements 𝐴𝑘 et 𝐵𝑘 de la façon suivante :

𝐴𝑘 = (
√

2𝑘 < 𝑋𝑡 ≤
√

2𝑘 + 1) et 𝐵𝑘 = (
√

2𝑘 + 1 < 𝑋𝑡 ≤
√

2𝑘 + 2)

a) Déterminer ℙ (𝐴𝑘) et ℙ (𝐵𝑘).

b) i) Montrer que ∑
𝑛≥0

ℙ (𝐴𝑛) est une série convergente et déterminer sa somme.

ii) Montrer que ∑
𝑛≥0

ℙ (𝐵𝑛) est une série convergente et déterminer sa somme.

iii) Est ce qu’on peut avoir ℙ (
+∞
⋃

𝑛=0
𝐴𝑛) = ℙ (

+∞
⋃

𝑛=0
𝐵𝑛) ? Justifier votre réponse.
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Partie 2 : Calcul d’une intégrale impropre

Pour tout entier 𝑛 tel que 𝑛 ≥ 0 et pour tout réel 𝑥, on pose 𝑆𝑛(𝑥) =
𝑛

∑
𝑘=0

(−𝑡𝑥)𝑘

𝑘!
𝑓𝑡(𝑥). Pour tout entier 𝑛 tel que

𝑛 ≥ 0, on définit le moment d’ordre 𝑛 de la fonction 𝑓𝑡 par, 𝑚𝑛 = ∫
+∞

−∞
𝑥𝑛𝑓𝑡(𝑥)𝑑𝑥, (on rappelle que 𝑚𝑛 dépend de 𝑡).

1. Déterminer pour tout entier 𝑘 tel que 𝑘 ≥ 0, 𝑚2𝑘 et 𝑚2𝑘+1.

2. Montrer que, pour tous réels 𝑎, 𝑏 et 𝑐 tel que 𝑎 > 0 , ∫
+∞

−∞
e−(𝑎𝑥2+𝑏𝑥+𝑐)𝑑𝑥 est une intégrale convergente et que

∫
+∞

−∞
e−(𝑎𝑥2+𝑏𝑥+𝑐)𝑑𝑥 = √𝜋

𝑎
𝑒 Δ

4𝑎 où Δ = 𝑏2 − 4𝑎𝑐

3. Montrer que l’intégrale ∫
+∞

−∞
e−𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥 est convergente et déterminer sa valeur.

4. Déterminer, pour tout réel 𝑥, lim
𝑛→+∞

𝑆𝑛(𝑥).

5. Montrer que ∫
+∞

−∞
e−𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥 =

+∞

∑
𝑘=0

(−1)𝑘𝑚𝑘
𝑡𝑘

𝑘!
.

6. En déduire la valeur de
+∞

∑
𝑘=0

𝑚2𝑘
𝑡2𝑘

(2𝑘)!
.

7. Montrer que l’intégrale ∫
1

0

1√
𝑡
e 𝑡

2 𝑑𝑡 est convergente.

8. Montrer que ∫
1

0

1√
𝑡
e 𝑡

2 𝑑𝑡 =
+∞

∑
𝑘=0

1
𝑘!(2𝑘 + 1)2𝑘−1 .

Partie 3 : Produit de convolution et une transformé

Dans la suite du problème, on note E l’ensemble des fonctions ℎ continues sur, ℝ à valeurs réelles, telles qu’il existe

un réel positif 𝑀 et un réel strictement positif 𝜆 vérifiant ∀𝑥 ∈ ℝ, |ℎ(𝑥)| ≤ 𝑀𝑓𝑡(𝜆𝑥).

On admet le résultat suivant : si 𝜙 une fonction continue de ℝ2 dans ℝ telle qu’il existe deux applications 𝜙1

et 𝜙2 continues sur ℝ et intégrables sur ℝ, vérifiant ∀(𝑥, 𝑦) ∈ ℝ2, |𝜙(𝑥, 𝑦)| ≤ 𝜙1(𝑥)𝜙2(𝑦), alors les deux expressions

∫
+∞

−∞
(∫

+∞

−∞
𝜙(𝑥, 𝑦)𝑑𝑥) 𝑑𝑦 et ∫

+∞

−∞
(∫

+∞

−∞
𝜙(𝑥, 𝑦)𝑑𝑦) 𝑑𝑥 sont bien définies et elles sont égales.

On rappelle que l’ensemble des fonctions continues sur ℝ à valeurs réelles, noté 𝒞(ℝ, ℝ), muni des deux lois” +” et

”.” usuelles est un ℝ-espace vectoriel.

1. Montrer que (E, +, .) est un ℝ-espace vectoriel et que la fonction 𝑓𝑡 est un élément de E.

2. Soient 𝜑 et 𝜓 deux éléments de E. On note 𝜑 ∗ 𝜓 l’application définie, pour tout réel 𝑥, pour lequel l’intégrale

existe, par (𝜑 ∗ 𝜓)(𝑥) = ∫
+∞

−∞
𝜑(𝑢)𝜓(𝑥 − 𝑢)𝑑𝑢.

a) Montrer que 𝜑 ∗ 𝜓 est définie sur ℝ.

b) Montrer que 𝜑 ∗ 𝜓 = 𝜓 ∗ 𝜑.

c) Déterminer 𝑓𝑡 ∗ 𝑓𝑡.

d) Montrer que 𝜑 ∗ 𝜓 est un élément de E.
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3. Soit 𝜑 un élément de E. On définit la fonction 𝜑 par 𝜑(𝑥) = ∫
+∞

−∞
e−𝑥𝑢𝜑(𝑢)𝑑𝑢.

a) Montrer que 𝜑 est bien définie sur ℝ.

b) Montrer que 𝜑 est de classe 𝒞2 sur ℝ et déterminer, pour tout 𝑥 de ℝ, les expressions de 𝜑′(𝑥) et 𝜑′′(𝑥),

chacune à l’aide d’une intégrale.

4. Soient 𝜑 et 𝜓 deux éléments de E.

a) Montrer qu’il existe un réel strictement positif 𝛼 tel que, pour tout couple (𝑥, 𝑢) de ℝ2,

𝑢2 + (𝑥 − 𝑢)2 ≥ 𝛼 (𝑢2 + 𝑥2)

b) Montrer que ∫
+∞

−∞
(𝜑 ∗ 𝜓)(𝑥)𝑑𝑥 = ∫

+∞

−∞
𝜓(𝑥)𝑑𝑥. ∫

+∞

−∞
𝜓(𝑥)𝑑𝑥.

c) Montrer que, pour tout réel 𝜔, (𝜑 ∗ 𝜓)(𝜔) = 𝜑(𝜔).𝜓(𝜔).

Partie 4 : Une suite de fonctions construite à partir du produit de
convolution

On note E1 l’ensemble des fonctions 𝜓 de E telles que ∫
+∞

−∞
𝜓(𝑥)𝑑𝑥 = 1. Pour toute fonction 𝜙 de E1, on considère

la suite (𝜙𝑛)𝑛≥1 définie par 𝜙1 = 𝜙 et pour tout entier 𝑛 ≥ 2, 𝜙𝑛 = 𝜙𝑛−1 ∗ 𝜙1

1. Montrer que, pour tout entier 𝑛 ≥ 1, 𝜙𝑛 est un élément de E1.

2. Déterminer, pour tout entier 𝑛 ≥ 1 et pour tout réel 𝑥, 𝜙𝑛(𝑥) en fonction de ̂𝜙(𝑥) et de 𝑛.

3. Dans cette question, on prend 𝜙 = (√ 𝑡
2𝜋 ) 𝑓𝑡, ou 𝑓𝑡 est la fonction définie au début du problème.

a) Montrer que, pour tout entier 𝑛 ≥ 1, il existe un réel 𝐶𝑛(𝑡), à déterminer, tel que

∀𝑥 ∈ ℝ; 𝜙𝑛(𝑥) = 𝐶𝑛(𝑡)e−𝑡 𝑥2
2𝑛 .

b) Montrer qu’il existe une constante réelle 𝜈 strictement positive, tel que pour tout entier 𝑛 ≥ 1 et pour tout

réel 𝑢, 𝜙𝑛 (𝑢√ 𝑡
𝑛 ) = e𝜈𝑢2 .

4. Soit 𝜙 un élément quelconque de E1. On pose pour tout entier naturel non nul 𝑛

𝑀𝑛,1 = ∫
+∞

−∞
𝑢𝜙𝑛(𝑢)𝑑𝑢, 𝑀𝑛,2 = ∫

+∞

−∞
𝑢2𝜙𝑛(𝑢)𝑑𝑢 et 𝑉𝑛 = 𝑀𝑛,2 − 𝑀2

𝑛,1

a) Montrer que la fonction 𝜙𝑛 admet un développement limité à l’ordre 2 en 0 dont on précisera les coefficients

à l’aide de 𝑀𝑛,1 et de 𝑀𝑛,2.

b) En déduire que 𝑀𝑛,1 = 𝑛𝑀1,1 et 𝑉𝑛 = 𝑛𝑉1.

5. On suppose de plus dans cette question que la fonction 𝜙 vérifie 𝑀1,1 = 0. Déterminer lim
𝑛→+∞

𝜙𝑛 (𝑢√ 𝑡
𝑛 ).

- FIN DE L’ÉPREUVE -
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Quelques rappels sur les variables aléatoires à densité :

• Une variable aléatoire 𝑋 est dite à densité si il existe une fonction 𝑓 définie de ℝ dans ℝ , continue par morceaux et

admet un nombre fini de points de discontinuité , intégrable sur ℝ et ∫
+∞

−∞
𝑓(𝑥)𝑑𝑥 = 1 telle que pour tous réels 𝑎 ≤ 𝑏

on a ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥.

• La fonction de répartition de 𝑓, notée 𝐹𝑋, est définie par 𝐹𝑋 ∶ 𝑥 ↦ ∫
𝑥

−∞
𝑓(𝑡)𝑑𝑡.

Pour tous réels 𝑎 ≤ 𝑏 on a ℙ(𝑎 ≤ 𝑋 ≤ 𝑏) = 𝐹𝑋(𝑏) − 𝐹𝑋(𝑎) . En tout point 𝑥 où 𝑓 est continue on a 𝐹 ′
𝑋(𝑥) = 𝑓(𝑥).

• Si la fonction 𝑡 ↦ 𝑡𝑓(𝑡) est intégrable sur ℝ alors l’espérance de 𝑋 est donnée par 𝔼(𝑋) = ∫
+∞

−∞
𝑡𝑓(𝑡)𝑑𝑡.

• Si la fonction 𝑡 ↦ 𝑡2𝑓(𝑡) est intégrable sur ℝ alors la variance de 𝑋 est donnée par
𝕍(𝑋) = 𝔼((𝑋 − 𝔼(𝑋))2) = 𝔼(𝑋2) − 𝔼(𝑋)2

et l’écart-type est égale à 𝜎𝑋 = √𝕍(𝑋).

Exercice

1. a) On a pour 𝐴 ≥ 0 ∫
𝐴

0
𝑒−3𝑥𝑑𝑥 = 1 − e−3𝐴

3
, donc l’intégrale 𝐼0 converge et 𝐼0 = 1

3 .

b) On sait que, pour tout entier naturel 𝑛 , 𝑥𝑛+2e−3𝑥 →
𝑥→+∞

0 donc 𝑥𝑛e−3𝑥 =
𝑥→+∞

𝑜 ( 1
𝑥2 ) .

c) Soit 𝑛 ∈ ℕ . La fonction 𝑥 ↦ 1
𝑥2 est intégrable au voisinage de l’infinie , donc la fonction 𝑥 ↦ 𝑥𝑛e−3𝑥 est

intégrable sur [0, +∞[ , d’où la convergence de l’intégrale 𝐼𝑛.

2. Soit 𝑛 ∈ ℕ et 𝐴 ≥ 0 , une intégration par parties donne

∫
𝐴

0
𝑥𝑛+1e−3𝑥𝑑𝑥 = ∫

𝐴

0
𝑥𝑛+1 (−e−3𝑥

3
)

′

𝑑𝑥

= −1
3

[𝑥𝑛+1e−3𝑥 ]𝐴
0

+ (𝑛 + 1)
3

∫
𝐴

0
𝑥𝑛e−3𝑥𝑑𝑥

ainsi ∫
𝐴

0
𝑥𝑛+1e−3𝑥𝑑𝑥 = −𝐴𝑛+1

3
e−3𝐴 + (𝑛 + 1)

3
∫

𝐴

0
𝑥𝑛e−3𝑥𝑑𝑥

3. Dans la relation précédente on fait tendre un 𝐴 vers +∞ , on obtient pour tout entier naturel 𝑛 , 𝐼𝑛+1 = (𝑛 + 1)
3

𝐼𝑛 .

1https://tinyurl.com/2qyzzrbd
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4. Soit 𝑛 ∈ ℕ . De la question précédente on a

𝐼𝑛 = 𝑛
3

𝑛 − 1
3

...1
3

𝐼0 = 𝑛!
3𝑛 𝐼0

puisque 𝐼0 = 1
3 alors 𝐼𝑛 = 𝑛!

3𝑛+1 .

5. Soit 𝑓(𝑥) =
⎧{
⎨{⎩

0 si 𝑥 ≤ 0
9
4 (1 + 𝑥)e−3𝑥 si 𝑥 > 0

, dont une représentation graphique :

−2 −1 1 2

1

9
4

𝑥

𝑓(𝑥)

𝑓 est une fonction de densité car

∫
+∞

−∞
𝑥𝑓(𝑥)𝑑𝑥 = 9

4
(𝐼0 + 𝐼1) = 9

4
(1

3
+ 1

9
) = 1.

a) D’après 1.b) on a 𝑥𝑓(𝑥) =
𝑥→+∞

𝑜 ( 1
𝑥2 ) donc la fonction 𝑥 ↦ 𝑥𝑓(𝑥) est intégrable sur [0, +∞[ donc intégrable sur ℝ

par suite 𝑋 admet une espérance .

On a

𝔼(𝑋) = ∫
+∞

−∞
𝑥𝑓(𝑥)𝑑𝑥

= 9
4

∫
+∞

0
𝑥(1 + 𝑥)e−3𝑥𝑑𝑥

= 9
4

(𝐼1 + 𝐼2)

= 9
4

(1
9

+ 2
27

)

ainsi 𝔼(𝑋) = 5
12

.

b) De même la fonction 𝑥 ↦ 𝑥2𝑓(𝑥) est intégrable sur ℝ donc 𝑋 admet une variance .

On a
𝔼(𝑋2) = ∫

+∞

−∞
𝑥2𝑓(𝑥)𝑑𝑥 = 9

4
(𝐼2 + 𝐼3) = 1

3

et 𝕍(𝑋) = 𝔼(𝑋2) − 𝔼(𝑋)2 = 23
144

.
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Problème.

Pour tout réel strictement positif 𝑡 , on considère les deux fonctions 𝑓𝑡 et 𝑔𝑡 qui sont définies sur ℝ par,

𝑓𝑡(𝑥) = e−𝑡 𝑥2
2 et 𝑔𝑡(𝑥) = {

0 si 𝑥 ≤ 0
𝑡𝑥𝑓𝑡(𝑥) si 𝑥 > 0

.

Une représentation graphique dans le cas 𝑡 = 2 :

−2 −1 1 2

1

𝑥

𝑓2(𝑥)

−2 −1 1 2

0.5

1

𝑥

𝑔2(𝑥)

Dans toute la suite du problème, on prend 𝑡 un réel strictement positif

Partie 1: Etude d’une variable aléatoire

1. a) Soit 𝑡 > 0 . La fonction 𝑥 ↦ 𝑥𝑛e−𝑡 𝑥2
2 est continue sur [0, +∞[ et 𝑥𝑛e−𝑡 𝑥2

2 =
𝑥→+∞

𝑜 ( 1
𝑥2 ) , donc elle est intégrable

sur [0, +∞[, ainsi l’intégrale 𝐼𝑛 = ∫
+∞

0
𝑥𝑛𝑓𝑡(𝑥)𝑑𝑥 est convergente , pour tout entier 𝑛 .

b) On a

𝐼0 = ∫
+∞

0
e−𝑡 𝑥2

2 𝑑𝑥 𝑢=𝑥
√

𝑡= 1√
𝑡

∫
+∞

0
e− 𝑢2

2 𝑑𝑢

donc 𝐼0 = √ 𝜋
2𝑡

.

c) On a

𝐼1 = ∫
+∞

0
𝑥e−𝑡 𝑥2

2 𝑑𝑥

= −1
𝑡

∫
+∞

0
(e−𝑡 𝑥2

2 )
′
𝑑𝑥

= −1
𝑡

( lim
𝐴→+∞

e−𝑡 𝐴2
2 − 1)

donc 𝐼1 = 1
𝑡

.

2. a) Soit 𝑛 ≥ 2 et 𝑢 ∈ [0, +∞[, on a

∫
𝑢

0
𝑥𝑛𝑓𝑡(𝑥)𝑑𝑥 = ∫

𝑢

0
𝑥𝑛e−𝑡 𝑥2

2 𝑑𝑥

= −1
𝑡

∫
𝑢

0
𝑥𝑛−1 (e−𝑡 𝑥2

2 )
′
𝑑𝑥
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une intégration par parties donne

∫
𝑢

0
𝑥𝑛𝑓𝑡(𝑥)𝑑𝑥 = −1

𝑡
[𝑥𝑛−1e−𝑡 𝑥2

2 ]
𝑢

0
+ 𝑛 − 1

𝑡
∫

𝑢

0
𝑥𝑛−2e− 𝑥2

2 𝑑𝑥

ainsi ∫
𝑢

0
𝑥𝑛𝑓𝑡(𝑥)𝑑𝑥 = −𝑢𝑛−1

𝑡
𝑓𝑡(𝑢) + 𝑛 − 1

𝑡
∫

𝑢

0
𝑥𝑛−2𝑓𝑡(𝑥)𝑑𝑥 .

b) Puisque −𝑢𝑛−1

𝑡
𝑓𝑡(𝑢) →

𝑢→+∞
0 et les intégrales sont convergentes, alors par passage à la limite on trouve

∫
+∞

0
𝑥𝑛𝑓𝑡(𝑥)𝑑𝑥 = 𝑛 − 1

𝑡
∫

+∞

0
𝑥𝑛−2𝑓𝑡(𝑥)𝑑𝑥

Ainsi pour tout entier 𝑛 ≥ 2, 𝐼𝑛 = 𝑛 − 1
𝑡

𝐼𝑛−2 .

3. a) La fonction 𝑔𝑡 est continue positive sur ℝ . Soit 𝐴 > 0 on a

∫
𝐴

−𝐴
𝑔𝑡(𝑥)𝑑𝑥 = ∫

𝐴

0
𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥

l’intégrale ∫
+∞

0
𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥 est convergente donc l’intégrale ∫

+∞

−∞
𝑔𝑡(𝑥)𝑑𝑥 est convergente , par passage à la limite

on a
∫

+∞

−∞
𝑔𝑡(𝑥)𝑑𝑥 = ∫

+∞

0
𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥 = 𝑡𝐼1 = 1

Ainsi 𝑔𝑡 est une densité de probabilité.

b) Soit 𝑥 ∈ ℝ , on a

𝐹𝑡(𝑥) = ∫
𝑥

−∞
𝑔𝑡(𝑢)𝑑𝑢

= ∫
𝑥

0
𝑡𝑢e−𝑡 𝑢2

2 𝑑𝑢

= ∫
𝑥

0
− (e−𝑡 𝑢2

2 )
′
𝑑𝑢

ainsi 𝐹𝑡(𝑥) = 1 − e−𝑡 𝑥2
2 .

−2 −1 1 2

1

𝑥

𝐹2(𝑥)

c) Pour tout 𝑥 ≥ 0 , on a 𝑥𝑔𝑡(𝑥) = 𝑡𝑥2𝑓𝑡(𝑥) donc la fonction 𝑥 ↦ 𝑥𝑔𝑡(𝑥) est intégrable sur ℝ , par suite 𝑋𝑡 admet
une espérance et

𝔼 (𝑋𝑡) = ∫
+∞

−∞
𝑥𝑔𝑡(𝑥)𝑑𝑥

= 𝑡 ∫
+∞

0
𝑥2𝑓𝑡(𝑥)𝑑𝑥

= 𝑡𝐼2

4



les questions 2)b) et 1)b) donnent : 𝐼2 = 1
𝑡
𝐼0 = 1

𝑡
√ 𝜋

2𝑡
.

Ainsi 𝔼 (𝑋𝑡) = √ 𝜋
2𝑡

.

d) Comme précédemment la fonction 𝑥 ↦ 𝑥2𝑔𝑡(𝑥) est intégrable sur ℝ , donc 𝑋𝑡 admet une variance 𝕍 (𝑋𝑡) .
On a

𝔼 ((𝑋𝑡)
2) = ∫

+∞

−∞
𝑥2𝑔𝑡(𝑥)𝑑𝑥

= 𝑡 ∫
+∞

0
𝑥3𝑓𝑡(𝑥)𝑑𝑥

= 𝑡𝐼3

avec 𝐼3 = 2
𝑡
𝐼1 et 𝐼1 = 1

𝑡
donc 𝔼 ((𝑋𝑡)

2) = 2
𝑡

.

Et on a 𝕍(𝑋𝑡) = 𝔼((𝑋𝑡)
2) − 𝔼(𝑋𝑡)2 donc 𝕍(𝑋𝑡) = 4 − 𝜋

2𝑡
.

e) On a 𝜎 (𝑋𝑡) = √4 − 𝜋
2𝑡

, donc 𝜎 (𝑋𝑡) = 1 si et seulement si 𝑡 = 4 − 𝜋
2

.

4. Pour tout entier naturel 𝑘, on note les deux événements 𝐴𝑘 et 𝐵𝑘 de la façon suivante:

𝐴𝑘 = (
√

2𝑘 < 𝑋𝑡 ≤
√

2𝑘 + 1) et 𝐵𝑘 = (
√

2𝑘 + 1 < 𝑋𝑡 ≤
√

2𝑘 + 2)

a) On a

ℙ(𝐴𝑘) = ℙ (
√

2𝑘 < 𝑋𝑡 ≤
√

2𝑘 + 1)

= ∫
√

2𝑘+1

√
2𝑘

𝑔𝑡(𝑥)𝑑𝑥

= 𝐹𝑡(
√

2𝑘 + 1) − 𝐹𝑡(
√

2𝑘)

on sait que 𝐹𝑡(𝑥) = 1 − e−𝑡 𝑥2
2 , donc ℙ(𝐴𝑘) = e−𝑡𝑘(1 − e− 𝑡

2 ) .

De même ℙ(𝐵𝑘) = 𝐹𝑡(
√

2𝑘 + 2) − 𝐹𝑡(
√

2𝑘 + 1) et ℙ(𝐵𝑘) = e−𝑡(𝑘+ 1
2 )(1 − e− 𝑡

2 )) .

b) i) La série ∑
𝑛≥0

e−𝑡𝑛 est géométrique est convergente donc la série ∑
𝑛≥0

ℙ (𝐴𝑛) est convergente

et
+∞
∑
𝑛=0

ℙ (𝐴𝑛) = 1 − e− 𝑡
2

1 − e−𝑡 = 1
1 + e− 𝑡

2
.

ii) De même on a la série ∑
𝑛≥0

ℙ (𝐵𝑛) est convergente et
+∞
∑
𝑛=0

ℙ (𝐵𝑛) = e− 𝑡
2

1 − e− 𝑡
2

1 − e−𝑡 = e− 𝑡
2

1 + e− 𝑡
2

.

iii) Les événements (𝐴𝑘)𝑘≥0 sont deux à deux disjoints donc ℙ (
+∞
⋃

𝑛=0
𝐴𝑛) =

+∞
∑
𝑛=0

ℙ (𝐴𝑛) = 1
1 + e− 𝑡

2
.

De même on a (𝐵𝑘)𝑘≥0 sont deux à deux disjoints et ℙ (
+∞
⋃

𝑛=0
𝐵𝑛) =

+∞
∑
𝑛=0

ℙ (𝐵𝑛) = e− 𝑡
2

1 + e− 𝑡
2

.

Donc on a ℙ (
+∞
⋃

𝑛=0
𝐴𝑛) = ℙ (

+∞
⋃

𝑛=0
𝐵𝑛) si et seulement si 𝑡 = 0 , ce qui contredit le fait que 𝑡 > 0.

Remarquons que ℙ (
+∞
⋃

𝑛=0
𝐴𝑛) > 1

2
et ℙ (

+∞
⋃

𝑛=0
𝐵𝑛) = 1 − ℙ (

+∞
⋃

𝑛=0
𝐴𝑛) < 1

2
ce qui justifie le résultat .

Les deux réunions ne sont pas complémentaires car (
+∞
⋃

𝑛=0
𝐴𝑛) ∪ (

+∞
⋃

𝑛=0
𝐵𝑛) ∪ ℝ− = ℝ et ℙ(ℝ−) = 0 .
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Partie 2: Calcul d’une intégrale impropre

Pour tout entier 𝑛 tel que 𝑛 ≥ 0 et pour tout réel 𝑥, on pose 𝑆𝑛(𝑥) =
𝑛

∑
𝑘=0

(−𝑡𝑥)𝑘

𝑘!
𝑓𝑡(𝑥). Pour tout entier 𝑛 tel que 𝑛 ≥ 0,

on définit le moment d’ordre 𝑛 de la fonction 𝑓𝑡 par, 𝑚𝑛 = ∫
+∞

−∞
𝑥𝑛𝑓𝑡(𝑥)𝑑𝑥 .

1. Soit 𝑘 ∈ ℕ . D’après la question 1)a) de la partie 1 l’intégrale ∫
+∞

0
𝑥𝑘𝑓𝑡(𝑥)𝑑𝑥 est convergente , par parité de 𝑓𝑡 on a

la convergence de l’intégrale ∫
0

−∞
𝑥𝑘𝑓𝑡(𝑥)𝑑𝑥 , ce qui justifie l’existence de 𝑚𝑘 .

• On a
𝑚2𝑘 = ∫

+∞

−∞
𝑥2𝑘𝑓𝑡(𝑥)𝑑𝑥 = ∫

+∞

−∞
𝑥2𝑘e−𝑡 𝑥2

2 𝑑𝑥

la fonction 𝑥 ↦ 𝑥2𝑘e−𝑡 𝑥2
2 𝑑𝑥 est paire donc

𝑚2𝑘 = 2 ∫
+∞

0
𝑥2𝑘e−𝑡 𝑥2

2 𝑑𝑥 = 2𝐼2𝑘

d’après la question 2)b) de la partie 1 on a

𝐼2𝑘 = 2𝑘 − 1
𝑡

𝐼2𝑘−2

= 2𝑘 − 1
𝑡

2𝑘 − 3
𝑡

...1
𝑡
𝐼0

= (2𝑘)!
𝑡𝑘 (2𝑘.(2𝑘 − 2)...2)

𝐼0

= (2𝑘)!
𝑡𝑘 2𝑘 𝑘!

𝐼0

comme 𝐼0 = √ 𝜋
2𝑡

alors 𝐼2𝑘 = (2𝑘)!
√

𝜋
(
√

2𝑡)2𝑘+1 𝑘!
, ainsi 𝑚2𝑘 = 2 (2𝑘)!

√
𝜋

(
√

2𝑡)2𝑘+1 𝑘!
.

• De même 𝑚2𝑘+1 = ∫
+∞

−∞
𝑥2𝑘+1e−𝑡 𝑥2

2 𝑑𝑥 et la fonction 𝑥 ↦ 𝑥2𝑘+1e−𝑡 𝑥2
2 est impaire donc 𝑚2𝑘+1 = 0 .

2. Soit 𝑎, 𝑏 et 𝑐 des réels tels que 𝑎 > 0 . Pour tout réel 𝑥 écrivons

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 𝑎 ((𝑥 + 𝑏
2𝑎

)
2

+ 𝑐 − 𝑏2

4𝑎2 ) = 𝑎 (𝑥 + 𝑏
2𝑎

)
2

− Δ
4𝑎

avec Δ = 𝑏2 − 4𝑎𝑐 , ce qui donne pour 𝐴 > 0

∫
+𝐴

−𝐴
e−(𝑎𝑥2+𝑏𝑥+𝑐)𝑑𝑥 = e Δ

4𝑎 ∫
+𝐴

−𝐴
e−𝑎(𝑥+ 𝑏

2𝑎 )2
𝑑𝑥

on fait le changement de variable 𝑢 =
√

2𝑎 (𝑥 + 𝑏
2𝑎

) ∶

∫
+𝐴

−𝐴
e−(𝑎𝑥2+𝑏𝑥+𝑐)𝑑𝑥 = 1√

2𝑎
e Δ

4𝑎 ∫
√

2𝑎(𝐴+ 𝑏
2𝑎 )

√
2𝑎(−𝐴+ 𝑏

2𝑎 )
e− 𝑢2

2 𝑑𝑢

l’intégrale ∫
+∞

−∞
e− 𝑢2

2 𝑑𝑢 converge donc l’intégrale ∫
+∞

−∞
e−(𝑎𝑥2+𝑏𝑥+𝑐)𝑑𝑥 est convergente , par passage à la limite on

obtient
∫

+∞

−∞
e−(𝑎𝑥2+𝑏𝑥+𝑐)𝑑𝑥 = 1√

2𝑎
e Δ

4𝑎 ∫
+∞

−∞
e− 𝑢2

2 𝑑𝑢
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et ∫
+∞

−∞
e− 𝑢2

2 𝑑𝑢 = 2 ∫
+∞

0
e− 𝑢2

2 𝑑𝑢 =
√

2𝜋 , d’où

∫
+∞

−∞
e−(𝑎𝑥2+𝑏𝑥+𝑐)𝑑𝑥 = √𝜋

𝑎
e Δ

4𝑎

3. • On a |e−𝑡𝑥𝑓𝑡(𝑥)| ≤ |𝑓𝑡(𝑥)| , la fonction 𝑓𝑡 est intégrable sur [0, +∞[ et elle est paire donc elle est intégrable sur

ℝ, par suite la fonction 𝑥 ↦ e−𝑡𝑥𝑓𝑡(𝑥) est intégrable sur ℝ et l’intégrale ∫
+∞

−∞
e−𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥 est convergente .

• Remarquons que

∫
+∞

−∞
e−𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥 = ∫

+∞

−∞
e−( 𝑡

2 𝑥2+𝑡𝑥)𝑑𝑥

En suite appliquons le résultat de la question précédente avec 𝑎 = 𝑡
2 , 𝑏 = 𝑡 et 𝑐 = 0 , ce qui donne Δ = 𝑡2 et

∫
+∞

−∞
e−𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥 = √2𝜋

𝑡
e 𝑡

2

4. Soit 𝑥 ∈ ℝ , la série ∑
𝑘

(−𝑡𝑥)𝑘

𝑘!
converge et de somme e−𝑡𝑥 donc lim

𝑛→+∞
𝑆𝑛(𝑥) = e−𝑡𝑥𝑓𝑡(𝑥)

5. D’après la question précédente, la suite de fonctions (𝑆𝑛)𝑛∈ℕ converge simplement sur ℝ vers la fonction 𝑥 ↦ e−𝑡𝑥𝑓𝑡(𝑥).
Et on la majoration

|𝑆𝑛(𝑥)| ≤
𝑛

∑
𝑘=0

|𝑡𝑥|𝑘

𝑘!
𝑓𝑡(𝑥) ≤ e|𝑡𝑥|e−𝑡 𝑥2

2

la fonction 𝜑 ∶ 𝑥 ↦ e|𝑡𝑥|e−𝑡 𝑥2
2 est continue sur ℝ vérifie 𝜑(𝑥) =

𝑥→+∞
𝑜 ( 1

𝑥2 ) et 𝜑(𝑥) =
𝑥→−∞

𝑜 ( 1
𝑥2 ) , donc elle est intégrable

sur ℝ .
Le théorème de la convergence dominée permet d’écrire :∫

+∞

−∞
( lim

𝑛→+∞
𝑆𝑛(𝑥)) 𝑑𝑥 = (∫

+∞

−∞
𝑆𝑛(𝑥)𝑑𝑥) , donc

∫
+∞

−∞
e−𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥 = lim

𝑛→+∞

𝑛
∑
𝑘=0

(∫
+∞

−∞

(−𝑡𝑥)𝑘

𝑘!
e−𝑡 𝑥2

2 𝑑𝑥) =
+∞

∑
𝑘=0

(−𝑡)𝑘

𝑘!
(∫

+∞

−∞
𝑥𝑘e−𝑡 𝑥2

2 𝑑𝑥)

Ainsi on a ∫
+∞

−∞
e−𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥 =

+∞

∑
𝑘=0

(−1)𝑘𝑚𝑘
𝑡𝑘

𝑘!
.

6. D’après la question 1) on a 𝑚2𝑘+1 = 0 donc

+∞

∑
𝑘=0

𝑚2𝑘
𝑡2𝑘

(2𝑘)!
=

+∞

∑
𝑘=0

(−1)𝑘𝑚𝑘
𝑡𝑘

𝑘!
= ∫

+∞

−∞
e−𝑡𝑥𝑓𝑡(𝑥)𝑑𝑥

ce qui donne
+∞

∑
𝑘=0

𝑚2𝑘
𝑡2𝑘

(2𝑘)!
= √2𝜋

𝑡
e 𝑡

2 .

7. Soit 𝑎 ∈ ]0, 1] , dans ∫
1

𝑎

1√
𝑡
e 𝑡

2 𝑑𝑡 on pose 𝑢 =
√

𝑡 , ce qui donne

∫
1

𝑎

1√
𝑡
e 𝑡

2 𝑑𝑡 = 2 ∫
1

√
𝑎

e 𝑢2
2 𝑑𝑢

on en déduit que l’intégrale ∫
1

0

1√
𝑡
e 𝑡

2 𝑑𝑡 est convergente et ∫
1

0

1√
𝑡
e 𝑡

2 𝑑𝑡 = 2 ∫
1

0
e 𝑢2

2 𝑑𝑢 .
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8. On a pour tout 𝑢 ∈ ℝ , e 𝑢2
2 =

+∞

∑
𝑘=0

𝑢2𝑘

2𝑘𝑘!
donc ∫

1

0
e 𝑢2

2 𝑑𝑢 =
+∞

∑
𝑘=0

∫
1

0

𝑢2𝑘

2𝑘𝑘!
𝑑𝑢 , puisqu’il s’agit d’une série entière ,

ce qui donne ∫
1

0

1√
𝑡
e 𝑡

2 𝑑𝑡 =
+∞

∑
𝑘=0

1
𝑘!(2𝑘 + 1)2𝑘−1

Partie 3: Produit de convolution et une transformé

1. • On a E ⊂C (ℝ, ℝ) et il contient la fonction nulle, donc E ≠ ∅.
Soit 𝜑, 𝜓 dans E et 𝛼, 𝛽 dans ℝ , donc il existe 𝑀𝜑, 𝑀𝜓, 𝜆𝜑, 𝜆𝜓 dans ℝ tels que

𝑀𝜑 ≥ 0, 𝑀𝜓 ≥ 0, 𝜆𝜑 > 0, 𝜆𝜓 > 0 et ∀𝑥 ∈ ℝ, |𝜑(𝑥)| ≤ 𝑀𝜑𝑓𝑡(𝜆𝜑𝑥) , |𝜓(𝑥)| ≤ 𝑀𝜓𝑓𝑡(𝜆𝜓𝑥) (1)

Pour 𝑥 ∈ ℝ on a
|𝛼𝜑(𝑥) + 𝛽𝜓(𝑥)| ≤ |𝛼| 𝑀𝜑𝑓𝑡(𝜆𝜑𝑥) + |𝛽| 𝑀𝜓𝑓𝑡(𝜆𝜓𝑥)

soit 𝛿 = min(𝜆𝜑, 𝜆𝜓) alors 𝑓𝑡(𝜆𝜑𝑥) ≤ 𝑓𝑡(𝛿𝑥) et 𝑓𝑡(𝜆𝜓𝑥) ≤ 𝑓𝑡(𝛿𝑥) , par suite

|𝛼𝜑(𝑥) + 𝛽𝜓(𝑥)| ≤ (|𝛼| 𝑀𝜑 + |𝛽| 𝑀𝜓) 𝑓𝑡(𝛿𝑥)

donc 𝛼𝜑 + 𝛽𝜓 ∈ E . Ce qui prouve que est E est un sous espace vectoriel de C (ℝ, ℝ) .

• Si on prend 𝑀 = 𝜆 = 1 on obtient 𝑓𝑡 ∈ E .

2. Soient 𝜑 et 𝜓 deux éléments de E, on garde les notations (1).

a) Soit 𝑥, 𝑢 ∈ ℝ on a |𝜑(𝑢)𝜓(𝑥 − 𝑢)| ≤ 𝑀𝜑𝑀𝜓𝑓𝑡(𝜆𝜑𝑢)𝑓𝑡(𝜆𝜓(𝑥 − 𝑢)) et

𝑓𝑡(𝜆𝜑𝑢)𝑓𝑡(𝜆𝜓(𝑥 − 𝑢)) =
𝑢→+∞

𝑜 ( 1
𝑢2 ) et 𝑓𝑡(𝜆𝜑𝑢)𝑓𝑡(𝜆𝜓(𝑥 − 𝑢)) =

𝑢→−∞
𝑜 ( 1

𝑢2 )

donc la fonction 𝑢 ↦ 𝑓𝑡(𝜆𝜑𝑢)𝑓𝑡(𝜆𝜓(𝑥 − 𝑢)) est intégrable sur ℝ par suite 𝑢 ↦ 𝜑(𝑢)𝜓(𝑥 − 𝑢) est intégrable sur ℝ.
Ainsi 𝜑 ∗ 𝜓 est bien définie sur ℝ.

b) Écrivons

(𝜑 ∗ 𝜓)(𝑥) = lim
𝐴→+∞

∫
+𝐴

−𝐴
𝜑(𝑢)𝜓(𝑥 − 𝑢)𝑑𝑢

et posons 𝑣 = 𝑥 − 𝑢 alors pour tout 𝐴 > 0

∫
+𝐴

−𝐴
𝜑(𝑢)𝜓(𝑥 − 𝑢)𝑑𝑢 = ∫

𝑥+𝐴

𝑥−𝐴
𝜑(𝑥 − 𝑣)𝜓(𝑣)𝑑𝑣

par passage à la limite on trouve

∫
+∞

−∞
𝜑(𝑢)𝜓(𝑥 − 𝑢)𝑑𝑢 = ∫

+∞

−∞
𝜓(𝑣)𝜑(𝑥 − 𝑣)𝑑𝑣

Ainsi 𝜑 ∗ 𝜓 = 𝜓 ∗ 𝜑.

c) Soit 𝑥 ∈ ℝ on a

(𝑓𝑡 ∗ 𝑓𝑡) (𝑥) = ∫
+∞

−∞
𝑓𝑡(𝑢)𝑓𝑡(𝑥 − 𝑢)𝑑𝑢

= ∫
+∞

−∞
e− 𝑡

2 (𝑢2+(𝑢−𝑥)2)𝑑𝑢

= ∫
+∞

−∞
e−(𝑡𝑢2−𝑡𝑥𝑢+ 1

2 𝑡𝑥2)𝑑𝑢
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d’après la question 2) de la partie 2 on a

∫
+∞

−∞
e−(𝑎𝑥2+𝑏𝑥+𝑐)𝑑𝑥 = √𝜋

𝑡
e Δ

4𝑡 avec Δ = −(𝑡𝑥)2

donc (𝑓𝑡 ∗ 𝑓𝑡) (𝑥) = √ 𝜋
𝑡 e− 𝑡

4 𝑥2 = √ 𝜋
𝑡 𝑓 𝑡

2
(𝑥) ainsi 𝑓𝑡 ∗ 𝑓𝑡 = √𝜋

𝑡
𝑓 𝑡

2

d) On garde les notations de la question 1) . Soit 𝑥 ∈ ℝ on a

|𝜑 ∗ 𝜓(𝑥)| ≤ ∫
+∞

−∞
|𝜑(𝑢)| |𝜓(𝑥 − 𝑢)| 𝑑𝑢

≤ 𝑀𝜑𝑀𝜓 ∫
+∞

−∞
𝑓𝑡(𝜆𝜑𝑢) 𝑓𝑡(𝜆𝜓(𝑥 − 𝑢)) 𝑑𝑢

Soit 𝛿 = min(𝜆𝜑, 𝜆𝜓) , on a 𝑓𝑡(𝜆𝜑𝑢) 𝑓𝑡(𝜆𝜓(𝑥 − 𝑢)) = 𝑓𝑡(𝛿𝑢) 𝑓𝑡(𝛿(𝑥 − 𝑢)) donc

|𝜑 ∗ 𝜓(𝑥)| ≤ 𝑀𝜑𝑀𝜓 ∫
+∞

−∞
𝑓𝑡(𝛿𝑢) 𝑓𝑡(𝛿(𝑥 − 𝑢)) 𝑑𝑢

le changement de variable 𝑣 = 𝛿𝑢 donne

|𝜑 ∗ 𝜓(𝑥)| ≤
𝑀𝜑𝑀𝜓

𝛿
∫

+∞

−∞
𝑓𝑡(𝑣) 𝑓𝑡(𝛿𝑥 − 𝑣) 𝑑𝑣

≤
𝑀𝜑𝑀𝜓

𝛿
(𝑓𝑡 ∗ 𝑓𝑡) (𝛿𝑥)

la question précédente donne |𝜑 ∗ 𝜓(𝑥)| ≤ 𝑀𝜑𝑀𝜓
𝛿 √ 𝜋

𝑡 𝑓 𝑡
2
(𝛿𝑥) et remarquons que 𝑓 𝑡

2
(𝛿𝑥) = e− 𝑡

2 ( 𝛿𝑥√
2 )

2

= 𝑓𝑡( 𝛿𝑥√
2 ) .

Il suffit donc de prendre 𝑀𝜑∗𝜓 = 𝑀𝜑𝑀𝜓
𝛿 √ 𝜋

𝑡 et 𝜆𝜑∗𝜓 = 𝛿√
2 , ce qui justifie que 𝜑 ∗ 𝜓 est un élément de E.

3. Soit 𝜑 un élément de E. On définit la fonction 𝜑 par 𝜑(𝑥) = ∫
+∞

−∞
e−𝑥𝑢𝜑(𝑢)𝑑𝑢.

a) Soit 𝑥, 𝑢 ∈ ℝ on a
|e−𝑥𝑢𝜑(𝑢)| ≤ 𝑀𝜑e−𝑥𝑢𝑓𝑡(𝜆𝜑𝑢)

comme e−𝑥𝑢𝑓𝑡(𝜆𝜑𝑢) =
𝑢→+∞

𝑜 ( 1
𝑢2 ) et e−𝑥𝑢𝑓𝑡(𝜆𝜑) =

𝑢→−∞
𝑜 ( 1

𝑢2 ) alors la fonction 𝑢 ↦ e−𝑥𝑢𝑓𝑡(𝜆𝜑𝑢) est intégrable sur
ℝ , par suite la fonction 𝑢 ↦ e−𝑥𝑢𝜑(𝑢) est intégrable sur ℝ , ainsi 𝜑 est bien définie sur ℝ.

b) Soit ℎ ∶ {
ℝ2 → ℝ

(𝑥, 𝑢) ↦ e−𝑥𝑢𝜑(𝑢)
, les dérivées partielles de ℎ par rapport à 𝑥 existent et sont continues sur ℝ2 .

On a 𝜕2ℎ
𝜕𝑥2 (𝑥, 𝑢) = 𝑢2e−𝑥𝑢𝜑(𝑢) et pour tout (𝑥, 𝑢) ∈ ℝ2

Soit 𝐴 > 0 , on a pour tout (𝑥, 𝑢) ∈ [−𝐴, 𝐴] × ℝ

∣𝜕
2ℎ

𝜕𝑥2 (𝑥, 𝑢)∣ ≤ 𝑢2e|𝑥𝑢| |𝜑(𝑢)| ≤ 𝑀𝜑𝑢2e𝐴|𝑢|𝑓𝑡(𝜆𝜑𝑢)

la fonction 𝑢 ↦ 𝑀𝜑𝑢2e|𝑥𝑢|𝑓𝑡(𝜆𝜑𝑢) est intégrable sur ℝ ( comme dans a) ), c’est donc une fonction de domination.
Par le théorème de dérivation des fonctions définies par une intégrale , 𝜑 est de classe C 2 sur [−𝐴, 𝐴] , ceci est
valable pour tout 𝐴 > 0 donc 𝜑 est de classe C 2 sur ℝ et

𝜑′(𝑥) = − ∫
+∞

−∞
𝑢e−𝑥𝑢𝜑(𝑢)𝑑𝑢 , 𝜑′′(𝑥) = ∫

+∞

−∞
𝑢2e−𝑥𝑢𝜑(𝑢)𝑑𝑢 ∀𝑥 ∈ ℝ

4. Soient 𝜑 et 𝜓 deux éléments de E.

a) Pour tout (𝑥, 𝑢) de ℝ2, ‖(𝑥, 𝑢)‖ =
√

𝑢2 + 𝑥2 désigne la norme euclidienne de ℝ2, posons 𝑁(𝑥, 𝑢) = √𝑢2 + (𝑥 − 𝑢)2.
On vérifie facilement que 𝑁 est une norme de ℝ2, comme on est en dimension finie ces deux normes sont
équivalentes, d’où l’existence de 𝛽 ≥ 𝛼 > 0 tel que ‖(𝑥, 𝑢)‖ 𝛼 ≤ 𝑁(𝑥, 𝑢) ≤ 𝛽 ‖(𝑥, 𝑢)‖.
Ainsi il existe un réel strictement positif 𝛼 tel que, pour tout couple (𝑥, 𝑢) de ℝ2, 𝑢2 + (𝑥 − 𝑢)2 ≥ 𝛼 (𝑢2 + 𝑥2) .
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b) Soit (𝑥, 𝑢) de ℝ2 on a
|𝜑(𝑢)𝜓(𝑥 − 𝑢)| ≤ 𝑀𝜑𝑀𝜓𝑓𝑡(𝜆𝜑𝑢) 𝑓𝑡(𝜆𝜓(𝑥 − 𝑢))

soit 𝛿 = min(𝜆𝜑, 𝜆𝜓) donc
|𝜑(𝑢)𝜓(𝑥 − 𝑢)| ≤ 𝑀𝜑𝑀𝜓𝑓𝑡(𝛿𝑢) 𝑓𝑡(𝛿(𝑥 − 𝑢))

remarquons que
𝑓𝑡(𝛿𝑢) 𝑓𝑡(𝛿(𝑥 − 𝑢)) = e− 𝑡𝛿2

2 (𝑢2+(𝑥−𝑢)2)

d’après a) il existe 𝛼 > 0 tel que 𝑢2 + (𝑥 − 𝑢)2 ≥ 𝛼 (𝑢2 + 𝑥2) donc

𝑓𝑡(𝛿𝑢) 𝑓𝑡(𝛿(𝑥 − 𝑢)) ≤ e− 𝑡𝛿2
2 (𝛼(𝑢2+𝑥2))

Si on pose Φ ∶ (𝑥, 𝑢) ↦ 𝜑(𝑢)𝜓(𝑥 − 𝑢) . Soit 𝜙1 ∶ 𝑥 ↦ 𝑀𝜑e− 𝑡𝛼𝛿2
2 𝑥2 et 𝜙2 ∶ 𝑥 ↦ 𝑀𝜓e− 𝑡𝛼𝛿2

2 𝑥2 deux fonctions
intégrables sur ℝ , on a alors

|Φ(𝑥, 𝑢)| ≤ 𝜙1(𝑥)𝜙2(𝑢)

Le résultat admis au début de la partie permet d’écrire

∫
+∞

−∞
(𝜑 ∗ 𝜓)(𝑥)𝑑𝑥 = ∫

+∞

−∞
(∫

+∞

−∞
𝜑(𝑢)𝜓(𝑥 − 𝑢)𝑑𝑢) 𝑑𝑥

= ∫
+∞

−∞
(∫

+∞

−∞
𝜑(𝑢)𝜓(𝑥 − 𝑢)𝑑𝑥) 𝑑𝑢

= ∫
+∞

−∞
𝜑(𝑢) (∫

+∞

−∞
𝜓(𝑥 − 𝑢)𝑑𝑥) 𝑑𝑢

le changement de variable 𝑥 − 𝑢 = 𝑣 donne ∫
+∞

−∞
𝜓(𝑥 − 𝑢)𝑑𝑥 = ∫

+∞

−∞
𝜓(𝑥)𝑑𝑥 , par suite

∫
+∞

−∞
(𝜑 ∗ 𝜓)(𝑥)𝑑𝑥 = ∫

+∞

−∞
𝜑(𝑥)𝑑𝑥. ∫

+∞

−∞
𝜓(𝑥)𝑑𝑥

c) Soit 𝜔 ∈ ℝ , posons 𝜑0 ∶ 𝑥 ↦ e−𝜔𝑥𝜑(𝑥) et 𝜓0 ∶ 𝑥 ↦ e−𝜔𝑥𝜓(𝑥) . Avec les notations de la question b) on définies les
fonctions suivantes :
𝜙1 ∶ 𝑥 ↦ 𝑀𝜑e− 𝑡𝛼𝛿2

2 𝑥2−𝜔𝑥 et 𝜙2 ∶ 𝑥 ↦ 𝑀𝜓e− 𝑡𝛼𝛿2
2 𝑥2−𝜔𝑥 , qui sont intégrables sur ℝ .

Le résultat de la question b) appliqué à 𝜑0 et 𝜓0 donne

∫
+∞

−∞
(𝜑0 ∗ 𝜓0)(𝑥)𝑑𝑥 = ∫

+∞

−∞
𝜑0(𝑥)𝑑𝑥. ∫

+∞

−∞
𝜓0(𝑥)𝑑𝑥

qui se traduit par

∫
+∞

−∞
(∫

+∞

−∞
e−𝜔𝑢𝜑(𝑢)e−𝜔(𝑥−𝑢)𝜓(𝑥 − 𝑢)𝑑𝑢) 𝑑𝑥 = ∫

+∞

−∞
e−𝜔𝑥 (∫

+∞

−∞
𝜑(𝑢)𝜓(𝑥 − 𝑢)𝑑𝑢) 𝑑𝑥

= ∫
+∞

−∞
e−𝜔𝑥𝜑(𝑥)𝑑𝑥. ∫

+∞

−∞
e−𝜔𝑥𝜓(𝑥)𝑑𝑥

Ainsi pour tout réel 𝜔 on a (𝜑 ∗ 𝜓)(𝜔) = 𝜑(𝜔).𝜓(𝜔) .

Partie 4: Une suite de fonctions construite à partir du produit de
convolution

On note E1 l’ensemble des fonctions 𝜓 de E telles que ∫
+∞

−∞
𝜓(𝑥)𝑑𝑥 = 1. Pour toute fonction 𝜙 de E1, on considère la

suite (𝜙𝑛)𝑛≥1 définie par 𝜙1 = 𝜙 et pour tout entier 𝑛 ≥ 2, 𝜙𝑛 = 𝜙𝑛−1 ∗ 𝜙1
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1. Montrons le par récurrence sur 𝑛.
On a 𝜙1 ∈ E1 , supposons que 𝜙𝑛 ∈ E1, d’après la question 2) de la partie 3 on a 𝜙𝑛+1 = 𝜙𝑛 ∗ 𝜙1 ∈ E .
La question 4)b. donne

∫
+∞

−∞
𝜙𝑛+1(𝑥)𝑑𝑥 = ∫

+∞

−∞
(𝜙𝑛 ∗ 𝜙1) (𝑥)𝑑𝑥

= ∫
+∞

−∞
𝜙𝑛(𝑥)𝑑𝑥. ∫

+∞

−∞
𝜙1(𝑥)𝑑𝑥

= 1

donc 𝜙𝑛+1 ∈ E . D’où pour tout entier 𝑛 ≥ 1, 𝜙𝑛 ∈ E1.

2. Soit 𝑥 ∈ ℝ et 𝑛 ∈ ℕ∗ , d’après la question 2) de la partie 3 on a

𝜙𝑛(𝑥) = ̂𝜙𝑛−1 ∗ 𝜙1(𝑥) = 𝜙𝑛−1(𝑥).𝜙1(𝑥) = 𝜙𝑛(𝑥). ̂𝜙(𝑥)

par suite 𝜙𝑛(𝑥) = ( ̂𝜙(𝑥))
𝑛

.

3. On prend 𝜙 = (√ 𝑡
2𝜋 ) 𝑓𝑡 .

a) Par récurrence sur 𝑛 ≥ 1.

• On a 𝜙1(𝑥) = 𝐶1(𝑡) e−𝑡 𝑥2
2 avec 𝐶1(𝑡) = √ 𝑡

2𝜋 .

• Supposons que 𝜙𝑛(𝑥) = 𝐶𝑛(𝑡)e−𝑡 𝑥2
2𝑛 , alors

𝜙𝑛+1(𝑥) = (𝜙𝑛 ∗ 𝜙) (𝑥)

= √ 𝑡
2𝜋

𝐶𝑛(𝑡) ∫
+∞

−∞
e−𝑡 𝑢2

2𝑛 −𝑡 (𝑥−𝑢)2
2 𝑑𝑢

= √ 𝑡
2𝜋

𝐶𝑛(𝑡) ∫
+∞

−∞
e− 𝑡

2𝑛 ((𝑛+1)𝑢2−2𝑛𝑢𝑥+𝑛𝑥2𝑑𝑢

simplifions l’exposant

𝑡 𝑢2

2𝑛
+ 𝑡(𝑥 − 𝑢)2

2
= 𝑡(𝑛 + 1)

2𝑛
𝑢2 − 𝑡𝑢𝑥 + 𝑡

2
𝑥2

la question 2) de la partie 2 nous donne, avec 𝑎 = 𝑡(𝑛+1)
2𝑛 et Δ = − 𝑡2𝑥2

𝑛

𝜙𝑛+1(𝑥) = 𝐶𝑛(𝑡)√ 𝑛
𝑛 + 1

e
−𝑡𝑥2

2(𝑛+1)

Nous obtenons le résultat pour 𝑛 + 1 avec 𝐶𝑛+1(𝑡) = 𝐶𝑛(𝑡)√ 𝑛
𝑛+1 .

• Cette relation permet d’avoir 𝐶𝑛(𝑡) = √ 𝑛−1
𝑛 √ 𝑛−2

𝑛−1 ...√ 1
2 𝐶1(𝑡) par suite 𝐶𝑛(𝑡) = √ 𝑡

2𝑛𝜋

• Finalement on a pour tout entier 𝑛 ≥ 1 et tout 𝑥 ∈ ℝ 𝜙𝑛(𝑥) = √ 𝑡
2𝑛𝜋

e−𝑡 𝑥2
2𝑛 .

b) Soit 𝑛 ≥ 1 et 𝑢 ∈ ℝ , on a

𝜙𝑛 (𝑢√ 𝑡
𝑛

) = ∫
+∞

−∞
𝑒−𝑢√ 𝑡

𝑛 𝑥𝜙𝑛(𝑥)𝑑𝑥 = √ 𝑡
2𝑛𝜋

∫
+∞

−∞
e−𝑢√ 𝑡

𝑛 𝑥e−𝑡 𝑥2
2𝑛 𝑑𝑥

le changement de variable 𝑠 = √ 𝑡
𝑛 𝑥 donne

𝜙𝑛 (𝑢√ 𝑡
𝑛

) = √ 1
2𝜋

∫
+∞

−∞
e−𝑢𝑠e− 𝑠2

2 𝑑𝑠 = √ 1
2𝜋

e 1
2 𝑢2 ∫

+∞

−∞
e− (𝑠+𝑢)2

2 𝑑𝑠

et on a ∫
+∞

−∞
e− (𝑠+𝑢)2

2 𝑑𝑠 = ∫
+∞

−∞
e− 𝑥2

2 𝑑𝑥 = 2 ∫
+∞

0
e− 𝑥2

2 𝑑𝑥 =
√

2𝜋 , ainsi 𝜙𝑛 (𝑢√ 𝑡
𝑛 ) = e 1

2 𝑢2
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4. Soit 𝜙 un élément quelconque de E1. On pose pour tout entier naturel non nul 𝑛

𝑀𝑛,1 = ∫
+∞

−∞
𝑢𝜙𝑛(𝑢)𝑑𝑢, 𝑀𝑛,2 = ∫

+∞

−∞
𝑢2𝜙𝑛(𝑢)𝑑𝑢 et 𝑉𝑛 = 𝑀𝑛,2 − 𝑀2

𝑛,1

a) La question 3) de la partie 3 permet d’établir par récurrence que 𝜙𝑛 est de classe C 2 de plus

𝑀𝑛,1 = − (𝜙𝑛)
′
(0) et 𝑀𝑛,2 = (𝜙𝑛)

′′
(0) .

Donc 𝜙𝑛 admet un développement limité à l’ordre 2 en 0 ∶

𝜙𝑛(𝑡) = 1 + (𝜙𝑛)
′
(0)𝑡 + 1

2
(𝜙𝑛)

′′
(0)𝑡2 + 𝑜(𝑡2) = 1 − 𝑀1,𝑛𝑡 + 1

2
𝑀2,𝑛𝑡2 + 𝑜(𝑡2).

b) On a la relation 𝜙𝑛(𝑡) = ( ̂𝜙(𝑡))
𝑛

et

( ̂𝜙(𝑡))
𝑛

= (1 − 𝑀1,1𝑡 + 1
2

𝑀2,1𝑡2 + 𝑜(𝑡2))
𝑛

= 1 − 𝑛𝑀1,1𝑡 + (𝑛
2

𝑀2,1 + 𝑛 (𝑛 − 1)
2

𝑀 2
1,1) 𝑡2 + 𝑜(𝑡2).

Par unicité du D.L, on en déduit : 𝑀1,𝑛 = 𝑛𝑀1,1 et 𝑀2,𝑛 = 𝑛𝑀2,1 + 𝑛 (𝑛 − 1) 𝑀 2
1,1,

donc 𝑉𝑛 = 𝑀2,𝑛 − 𝑀 2
1,𝑛 = 𝑛𝑀2,1 − 𝑛𝑀 2

1,1 = 𝑛𝑉1 , ainsi 𝑀1,𝑛 = 𝑛𝑀1,1 et 𝑉𝑛 = 𝑛𝑉1 .

5. Si 𝑀1,1 = 0 alors 𝜙𝑛(𝑡) = (1 + 1
2

𝑀2,1𝑡2 + 𝑜(𝑡2))
𝑛

.
Soit 𝑡 ∈ ℝ , pour 𝑛 assez grand on a

̂𝜙 ( 𝑡√
𝑛

) = (1 +
𝑀2,1𝑡2

2𝑛
+ 𝑜 ( 1

𝑛
))

𝑛

= exp (𝑛 ln (1 +
𝑀2,1𝑡2

2𝑛
+ 𝑜 ( 1

𝑛
)))

= exp (𝑛 (
𝑀2,1𝑡2

2𝑛
+ 𝑜 ( 1

𝑛
)))

D’où lim
𝑛→∞

𝜙𝑛 ( 𝑡√
𝑛

) = exp (
𝑀2,1𝑡2

2
) .

- FIN -

12


