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Le but de ce probléme est de démontrer et utiliser plusieurs critéres pour prouver qu’'une matrice
symétrique réelle est définie positive. On rappelle que, pour un entier naturel non nul n, une matrice

symétrique M e M, (R) est dite définie positive si et seulement si :
¥ X e M, (R)\{0}, X" MX>0.
Q8. Démontrer, en utilisant directement la définition précédente, que la matrice Az[? U est
définie positive.
Caractérisation spectrale

Q9. Enoncer et démontrer une condition nécessaire et suffisante sur les valeurs propres d’une
matrice symétrique réelle pour que celle-ci soit définie positive.

Q10. Application : Démontrer que le polynéme P(X)=X°-6X*+9X -3 admet trois racines

réelles distinctes (on ne cherchera pas a les déterminer).
10 1

Démontrer alors que la matrice B=|0 2 1| est définie positive grace a la caractérisation

113
spectrale.

Un critére en dimension 2
Dans cette partie, on souhaite démontrer la caractérisation suivante :

Une matrice symétrique M e M, (R) est définie positive si et seulement si sa trace
et son déterminant sont strictement positifs.

Q11. Démontrer qu’une matrice définie positive M de taille quelconque vérifie toujours Tr(l\/l) >0
et det(M)>0.

Q12. Démontrer qu’'une matrice symétrique Memz(R), dont la trace et le déterminant sont
strictement positifs, est définie positive.

Q13. Le résultat de la question précédente reste-t-il vrai pour les matrices symétriques de 9, (R) ?
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Q14. Application : Utiliser le résultat précédent afin de démontrer que f:(IR+) — R définie par

f(x,y)=x+y +i admet un extremum local. Préciser s'il s’agit d'un minimum local ou d’'un
Xy

maximum local.



Le critére de Sylvester

Dans cette partie, on étudie le critere de Sylvester, valable en toute dimension.

Pour une matrice carrée quelconque M = (m,-J )ij (o] € M, (R) et un entier k [1, n], on définit le

k-ieme mineur principal comme étant le déterminant de la matrice M, = (m,-‘j )ij [1A] e M, (R). On
précise qu’une matrice carrée de taille n posséde n mineurs principaux.
10 1
Par exemple, les trois mineurs principaux de la matrice B=|0 2 1| de la question Q10. sont les
11 3
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1 1
10
déterminants des matrices B, =(1), B, (O 2} et B;=B=|0 1.
1 3

On dit qu’une matrice vérifie le critére de Sylvester si tous ses mineurs principaux sont strictement
positifs. On souhaite alors démontrer la caractérisation suivante :

Une matrice symétrique réelle est définie positive si et seulement si elle vérifie
le critere de Sylvester.

Par exemple, pour la matrice B de la question Q10., on constate que :
det(B1) =1>0, det(Bz) =2>0 et det(B3) =3>0.

La matrice B vérifie le critere de Sylvester, elle est donc définie positive.

Q15. On fixe une matrice MeM,(R), un entier ke[1 n], ainsi quun vecteur colonne
X1
X =| i |e M4(R). Déterminer un vecteur colonne X e M, ;(R)\{0}, tel que :
Xk

XFM, X, = X" MX .

Q16. Démontrer que toute matrice symétrique réelle définie positive vérifie le critere de Sylvester.

Dans les deux questions suivantes, il s’agit de démontrer la réciproque, c’est-a-dire que toute
matrice symétrique réelle vérifiant le critere de Sylvester est définie positive. Pour cela, on va
raisonner par récurrence sur la taille n de la matrice.

Q17. Soit n>2 et soit une matrice symétrique M e M, (R) telle que det(M)>0. On écrit cette
matrice par blocs sous la forme suivante :
M, U
M :( uT aJ avec M, ;eM,4(R), UeM, 41(R) et aeR.
On suppose que la matrice M,,_, est définie positive.
Justifier I'existence d’un vecteur colonne V e M, _4,(R) tel que M, ;V +U =0.



Q18.

Q19.

Q20.

Q21.

Q22.

ln—1 v . T v s Mn—1 0n—1,1
En notant Q = 0 at démontrer alors que Q" MQ s’écrit par blocs avec
1,n-1 1,n-1

£>0.

Démontrer par récurrence que toute matrice symétrique réelle vérifiant le critére de Sylvester
est définie positive.
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Pour quelles valeurs de x € R la matrice C(x) =|1 1 x| est-elle définie positive ?
0 x 1
2 2 1 4 5
2 3 1141
Lamatrice |1 -1 1 3 1] est-elle définie positive ? Justifier.
4 1 3 5 0
5 -1 10 1
Démontrer que pour tout (x,y,z) e R3\ {0} :

4x2+y2+22+2xy—3xz>0.

J3 1. 0 . O
1 . T, T, .
Pour quelles valeurs de neN la matrice S,=| 0 . . . 0 |e,(R) estelle
. 1
0 01 3

définie positive ?
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Probleme Proposition de corrigé

Q8. Tout d’abord, la matrice A est symétrique réelle.

Soit X = <il> e Mz1(R); ona
2
2 1

XTAX = ((El SUQ) (1 1

x
) (azl) =227 + 2129 + Tox1 + 25 = 27 + (71 + 22)?
2
Or z, et x1 + xo sont des réels, leurs carrés sont des réels positifs donc X TAX > 0: de plus, 1'égalité
XTAX =0 entraine 22 = (21 + #2)? = 0 donc 1 = 0 puis x3 = 0. Par contraposée, si X € M 1(R) est
non nul alors X T AX > 0; par définition, A est définie positive.

Caractérisation spectrale

Q9.

Q1o0.

1l s’agit de redémontrer ’équivalence suivante :

Une matrice symétrique réelle M € M,,(R) est définie positive si et seulement si ses valeurs propres
sont toutes strictement positives.

Supposons que M € M, (R) est symétrique définie positive. Soit A € R une valeur propre de M : en
prenant pour X un vecteur propre associé & A, X est un vecteur non nul de M,, 1 (R) donc X TMX >0
d’apres la définition de la définie-positivité ; d’autre part XTMX = XT(AX) = A(XTX) et XX est
égal au produit scalaire canonique (qui est défini positif) de X avec lui-méme, donc X "X > 0; on en
déduit que A > 0.

Supposons, réciproquement, que M est une matrice symétrique réelle a valeurs propres strictement posi-

tives. D’apres le théoreme spectral il existe une base orthonormée B = (e1, ..., €,) de M, 1(R) constituée
de vecteurs propres de M, de valeurs propres respectives Ai,...,A,. Soit X € M, 1(R) : en notant
(z1,...,2n) le n-uplet de ses coordonnées dans la base B, on a
n T n n n n n n
XTMX = (Z iEiEi) M( Z.’Ejej) = Z Z CL'Z'.’E]'(E,LT MEj ) = Z Z QL'Z'.’E]'AJ'(GZTG]') = Z )\ﬁC?
i—1 j=1 i=1 j—1 ~ i=1 j—=1 ~ i1
:/\jﬁj :(51',1'

Pour tout i € [1,n] le terme \;2? est un réel positif, donc la somme X TMX est positive ; de plus, si cette
somme est nulle alors pour tout i € [1,n] on a A\;2? = 0, donc z; = 0 puisque \; > 0, donc le vecteur X
est nul. Ainsi pour tout vecteur non nul X € M, 1(R) le réel X "M X est strictement positif : on conclut
que M est une matrice symétrique définie positive.
On étudie grossierement la fonction polynomiale associée a P, qui est une fonction réelle continue sur R ;
en évaluant P en 0, en les racines de P'(X) = 3X2%2 — 12X +9 = 3(X — 1)(X — 3) et en considérant la
limite de P en +0o on constate que
P(0)=-3<0, P(1)=1>0, P(3)=-3<0, P(z) ~ % —— 400
r——+o0 r—+o0
donc d’apreés le théoréme des valeurs intermédiaires I'image de chacun des intervalles [0,1], [1,3] et
[3, 400 est un intervalle contenant 0, donc P s’annule au moins une fois sur chaque intervalle ouvert
10,1[, ]1,3[ et |3, +o00[. Comme P est de degré 3, on conclut que P admet exactement trois racines
réelles distinctes «, 3, telles que
I<a<l<f<3<y

en particulier, toutes les racines de P sont strictement positives.

La matrice B est symétrique réelle; on calcule son polynéme caractéristique :

X-1 0 -1
xs5(X)=] 0 X-2 -1 |=X-1D)X-2)(X-3)-(X-2)—(X—-1)=P(X)
-1 -1 X-3

Ainsi les valeurs propres de B, qui sont les racines «, 3,7 de P, sont toutes strictement positives : d’apres
la caractérisation spectrale rappelée a la question Q9., B est une matrice symétrique définie positive.
On peut aussi commencer par observer que P = xp ; B est diagonalisable en tant que matrice symétrique
réelle (théoréme spectral), donc P(X) est scindé dans R[X]. On vérifie ensuite que les racines de P’ ne
sont pas des racines de P, donc toute racine de P est simple : P posséde trois racines réelles simples
distinctes. Enfin, pour tout réel © < 0 on a P(xz) < 0 en tant que somme de réels négatifs et d’un réel
strictement négatif ; ainsi toute racine de P, donc toute valeur propre de B, est strictement positive, et
on conclut que la matrice symétrique B est définie positive a l’aide de la caractérisation spectrale.



Un critére en dimension 2

Q11.

Q12.

Soit M une matrice symétrique définie positive, d’ordre n > 1. D’apres le théoreme spectral M est
diagonalisable dans M,,(RR), donc sa trace et son déterminant sont respectivement égaux a la somme
et au produit de ses valeurs propres (comptées avec leurs ordres de multiplicité; il s’agit d’une famille
non vide vu que n > 1); comme les valeurs propres sont des réels strictement positifs, il en résulte que
Tr(M) > 0 et det(M) > 0.

Soit M € M3(R) une matrice symétrique telle que Tr(M) > 0 et det(M) > 0. D’aprés le théoreme
spectral M posseéde deux valeurs propres réelles A\j, Ao (non nécessairement distinctes); de la relation
Mg = det(M) > 0 on déduit que A; et As sont des réels non nuls de méme signe, et de la relation
A1+ A2 = Tr(M) > 0 on déduit que \; et Ay sont strictement positifs. D’apres la caractérisation spectrale
rappelée a la question Q9., M est définie positive.

Remarque : ce critére est établi dans le cours sur l’optimisation au second ordre, dans le cas d’une fonction
de deux variables, ot l'on établit que la matrice hessienne en un point critique est définie positive si et
seulement si (en notation de Monge) rt — s* > 0 et v+t > 0; la question Q14. donne un exemple
d’application.

Q13. le critere ne se généralise pas a des matrices symétriques réelles d’ordre n > 2; on peut considérer

Q14.

3 0 0
par exemple la matrice diagonale Diag(3, —I2, I,,_3) (explicitement pourn=3: [0 —1 0 |), qui est
0 0 -1

symétrique réelle, de trace égale a n — 2 > 0 et déterminant égal a 3 > 0, mais qui possede des valeurs
propres négatives, donc n’est pas définie positive d’apres la caractérisation spectrale de la question Q9..
La fonction f est rationnelle donc de classe C? sur I'ouvert (R%)?; ses dérivées partielles premieres et
secondes ont pour expressions : pour tout (z,y) € (R%)?,

A S N
ax(x7y)_1_$2y7 ay(m7y)_1 xy27
ﬁ( )_i 62f( ) = 1 &( )_l
az2 Y = z3y’ Oxdy By = x2y?’ 0y? Y= xyd

Les éventuels points d’extremum local de f sont des points critiques; pour (z,y) € (R%)? on a

1
1
af af 3y
%(:ﬂ,y)—a—y(x,y)—() = 11 — z=y=1
2y a2y’
. " . . . 2 1
donc le seul point critique de f est (1,1). En ce point, la matrice hessienne de f est H f(1,1) = 1 2);

sa trace et son déterminant sont strictement positifs (respectivement égaux & 4 et 3), donc d’apres le
critere établi & la question Q12. Hf(1,1) est définie positive. Il en résulte que

f admet un minimum local (strict) en (1,1).

11 s’agit effectivement d’un point de minimum global : en utilisant linégalité entre moyenne arithmétique
et moyenne géométrique (ou la concavité du logarithme népérien), pour tout (z,y) € (R%)? on a

x xy)~t
Py) = 37O g Gy T = 3= 1, 1),

Le critéere de Sylvester

Q15.

Erreur d’énoncé : en général on ne peut pas imposer que X soit non nul si Xy est nul : par exemple st M
est définie positive alors pour tout vecteur X non nul on a X" MX > 0 alors que X,;erXk =0 lorsque
X, =0.

Xk

) € M, 1(R) on obtient
On—k,l '

On peut effectuer des calculs par blocs. En posant X = (

XTMX = (X,;r Ol,n—k) (Mk *) (0 Xy ) _ (Xkr Ol,n—k) (Mk-Xk +On—k,1> :X,:Mka 10

* ok n—k,1 *

et le vecteur X est non nul si et seulement si X est non nul.



Q16.

Q17.

Q18.

Q19.

Q20.

Soit M une matrice symétrique réelle définie positive et soit k € [1,n]. On considére un vecteur non nul
quelconque X € My 1(R) : d’apres la question Q15. il existe un vecteur non nul X € M,, 1(R) tel que
X" My Xy = XTMX, et ce réel est strictement positif car M est définie positive; il en résulte que M, est
définie positive, donc d’apres la question Q11. on a det(My) > 0. Ainsi M vérifie le critere de Sylvester.
La matrice M,,_; étant définie positive, son déterminant est strictement positif (question Q11.) donc
elle est inversible, et ’équation M,V + U =0 admet comme solution V = —M_* U.

De plus, comme la matrice M,,_; est symétrique on a aussi

VIMy  +U" =VIM]  +U" = (M1 V+U)" =010

N

A Taide d’un calcul par blocs on obtient alors :
I,_1 Op_ M,_1 U I, v
T _ n—1 n—1,1 n—1 n—1
oe= (= ) (g ) G 1)
_(In-1 On—1p) (Mn—1 On-1a _ (Mn Op—1,1
VT 1 Ul U'V4a O1n1 UTV+a

donc en posant 3 = UV + « on obtient la forme voulue : QT MQ = Diag(M,,_1, ).

Enfin, on compare les déterminants, en observant que det(Q) = det(Q") = 1 (déterminant d’une matrice
triangulaire par blocs) :

det(M,,—1)p = det ( Diag(M,—1, 8)) = det(QTMQ) = det(Q ") det(M) det(Q) = det(M)

or det(M) > 0 par hypothese et det(M,,_1) > 0, donc 5 > 0.
On considere le prédicat
H(n) : si M € M, (R) est une matrice symétrique vérifiant le critere de Sylvester, alors M est
définie positive.
Dire qu'une matrice M = (m) € M;(R) vérifie le critere de Sylvester signifie que m > 0, donc (z) " M(z) =
maz? >0 pour tout z € R~ {0} et la matrice M est définie positive : la proposition H(1) est vraie.
On suppose H(n — 1) pour un certain entier n > 2 et on consideére une matrice symétrique M € M, (R)
qui vérifie le critere de Sylvester. Le déterminant de M est un mineur principal de M, donc det(M) > 0;
les autres mineurs principaux de M sont aussi les mineurs principaux de la sous-matrice M, _1, qui
est également symétrique ; par hypotheése de récurrence H(n — 1), la matrice M,,_; est définie positive.
D’apres la question Q17., il existe une matrice ) inversible (en fait, triangulaire avec tous les coefficients
diagonaux égaux & 1) et un réel 4 > 0 tels que QT MQ = Diag(M,,_1, 8). Etant donné X € M, 1(R), on

éerit Q71X = (Z) avec Y € M,,_11(R) et z € R; on effectue un calcul par blocs :

(o)) e ()0 ()
(YT %) (Mg—l 2) (g) = YT MY + B2

OnafBz2>0et Y M,_1Y > 0 car M,_; est définie positive, donc XTMX > 0; de plus, I'égalité
XTMX =0 entraine YT M,,_1Y =0et 322 =0, donc Y = 0 et z = 0, et finalement X = Q (Z) =0

aussi. On a donc établi que la matrice M est définie positive, et que H(n — 1) implique H(n).

Par récurrence, on conclut que H(n) est valable pour tout n € IN*, autrement dit : toute matrice symétrique
réelle vérifiant le critere de Sylvester est définie positive.

Pour tout réel z, la matrice C(x) est symétrique réelle ; ses mineurs principaux sont, dans l'ordre : 2, 1 et

detC(x) =2 —1—22% =1— 227

Les deux premiers sont strictement positifs pour tout x, donc d’apres le critere de Sylvester la matrice

1 1
C(x) est définie positive si et seulement si 1 — 222 > 0, & savoir |z € } -, —= [
(z) N
On constate que la matrice de I’énoncé est symétrique réelle. En calculant dans ’ordre ses mineurs prin-
cipaux, on constate que le troisieme est négatif :

2 2 1
2 3 —-1l=6-2-2-3-2-4<0
1 -1 1

D’apres la condition nécessaire du critéere de Sylvester, |la matrice n’est pas définie positive




Q21.

Q22.

La fonction ¢ : (2,y,2) — 422 + y? + 22 + 22y — 3wz est polynomiale de degré 2, on peut exprimer
a l'aide de la formule de Taylor matricielle (le reste étant nul dans ce cas), par rapport a (0,0,0) : on a
q(0,0,0) = 0, la matrice jacobienne de g en (0,0, 0) est nulle, donc en notant H la matrice hessienne de ¢

en (0,0,0) et X le vecteur colonne (z y z)T,

1 8 2 -3
q(x,y,z)ziXTHX on H=|2 2 0
-3 0 2
Or les mineurs principaux de H valent dans 'ordre :
8§ 2 -3
8, ‘2 g’ =12, 2 2 0]|=6
-3 0 2

en particulier ils sont tous strictement positifs; d’apres le critere de Sylvester la matrice symétrique réelle
H est définie positive, donc pour tout (z,y,2) € R3 ~ {0} le réel X T HX est strictement positif, donc

q(z,y,2) > 0.

Un raisonnement plus élémentaire consiste a décomposer ’expression en une somme de carrés, comme @
la question Q8. : pour tout (x,y,z) € R3 on a
2 2, .2 2 3 23 9
do” +y* 4+ 2°+2zy — 3uz = (x +y)° + (ix—z) +1:17 >0

avec égalité si et seulement si les trois termes sont nuls, d savoir x =0 (dernier terme) et y = z = 0.
Pour n € IN* la matrice S,, est symétrique réelle, et pour k € [1,n] son k°™ mineur principal est le
déterminant de la matrice Sy ; d’apres le critere de Sylvester, S,, est définie positive si et seulement si
det(Sk) > 0 pour tout k € [1,n]. On calcule directement ce déterminant pour k € {1,2} : det(S1) =
V3 >0 et det(S2) = 2 > 0; on forme ensuite une relation de récurrence d’ordre 2 pour k£ > 3 en
développant les déterminants selon une rangée :

det(Sk) “E* V3 det(Sy_1) — 1 det (ofk;_i ’{) WVLE /3 det(Sp_1) — det(Sk_2)

On calcule alors (la résolution de cette relation de récurrence linéaire a coefficients constants est également
possible mais non nécessaire) :

det(S3) =v3>0,  det(Sy)=1>0,  det(S5)=0

La matrice symétrique .S,, est définie positive si et seulement si n € {1, 2, 3,4}.




