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EXERCICE 1 
 

Q1. Justifier que la matrice 
4 2 2
6 4 6
1 1 3

A
− − 
 = − − 
 − − 

 est diagonalisable et déterminer une matrice P telle 

que 1P AP−  soit diagonale. 
 
Q2. Application : On considère trois suites réelles ( ) ( ),n nn nu v∈ ∈ 

, et ( )n nw ∈
 telles que : 

1

1

1

4 2 2
6 4 6

3

n n n n

n n n n

n n n n

u u v w

v u v w

w u v w

+

+

+

= − + −


= − + −
 = − + −

   pour tout n∈ . 

 

 Pour tout n∈ , on pose 
n

n n

n

u
X v

w

 
 =  
 
 

  et  1
n

n n n

n

Y P X
α
β
γ

−
 
 = =  
 
 

. 

 Pour tout n∈ , exprimer nY  en fonction de 0 0,α β , 0γ  et n. 
 À quelle condition sur ( )0 0 0, ,u v w  les suites ( ) ( ),n nn nu v∈ ∈ 

 et ( )n nw ∈
 convergent-elles 

simultanément ? Expliciter alors ces suites. 
 
 

EXERCICE 2 
 

Pour *n∈ , on note nS  le groupe des permutations de l’ensemble 
 

0, 1n − . Une permutation de 

nS  sera représentée en Python par une liste, dont l’élément d’indice i est l’image de i par cette 
permutation. Par exemple, la liste [ ]3,1,0,2  représente la permutation 4σ ∈ S  définie par 

( ) ( ) ( ), ,σ σ σ0 =3 1 =1 2 =0  et ( )σ 3 =2 .  
 
Dans tout l’exercice, on pourra utiliser librement les tests Python du type x in L (respectivement x 
not in L) permettant de vérifier si x est présent dans la liste L (respectivement de vérifier si x 
n’est pas présent dans la liste L). 
 
Q3. Si s est une liste Python représentant une permutation de 4S , quelle instruction Python permet 

de trouver l’image de 1 par cette permutation ? 
 Quelle liste Python représente la transposition ( ) 4∈2 3 S  ? 
 
Q4. Écrire une fonction Python comp(s1, s2) prenant en entrée deux listes représentant des 

permutations 1σ  et 2σ  du même groupe de permutations et renvoyant la liste représentant la 
permutation 1 2σ σ . 

 
Q5. Écrire une fonction Python inv(s) prenant en entrée une liste représentant une permutation  

σ  et renvoyant la liste représentant 1σ − . 
 
Q6. On souhaite tester si un sous-ensemble G de nS  est ou non un sous-groupe de nS . Écrire une 

fonction Python groupe(G) prenant en entrée une liste de listes, où chaque sous-liste 
représente une permutation de nS  et renvoyant True s’il s’agit bien d’un sous-groupe de nS , 
False sinon. 

 

 

Le but de ce problème est de démontrer et utiliser plusieurs critères pour prouver qu’une matrice 
symétrique réelle est définie positive. On rappelle que, pour un entier naturel non nul n, une matrice 
symétrique ( )nM ∈ M  est dite définie positive si et seulement si : 

( ) { } T
,1 \ 0 , 0nX X MX∀ ∈ >M . 

Q8. Démontrer, en utilisant directement la définition précédente, que la matrice 
2 1
1 1

A  
=  
 

 est 

définie positive. 
 
Caractérisation spectrale 
 
Q9. Énoncer et démontrer une condition nécessaire et suffisante sur les valeurs propres d’une 

matrice symétrique réelle pour que celle-ci soit définie positive. 
 
Q10. Application : Démontrer que le polynôme ( ) 3 26 9 3P X X X X= − + −  admet trois racines 

réelles distinctes (on ne cherchera pas à les déterminer). 

Démontrer alors que la matrice 
1 0 1
0 2 1
1 1 3

B
 
 

=  
 
 

 est définie positive grâce à la caractérisation 

spectrale. 
 
Un critère en dimension 2 
 
Dans cette partie, on souhaite démontrer la caractérisation suivante : 
 

Une matrice symétrique ( )2M ∈ M  est définie positive si et seulement si sa trace  
et son déterminant sont strictement positifs. 

 
Q11. Démontrer qu’une matrice définie positive M de taille quelconque vérifie toujours ( )Tr 0M >  

et ( )det 0M > . 
 

Q12. Démontrer qu’une matrice symétrique ( )2M ∈ M , dont la trace et le déterminant sont 
strictement positifs, est définie positive. 

 
Q13. Le résultat de la question précédente reste-t-il vrai pour les matrices symétriques de ( )3 M  ? 
 

Q14. Application : Utiliser le résultat précédent afin de démontrer que ( )2*:f + →   définie par 

( ) 1,f x y x y
xy

= + +  admet un extremum local. Préciser s’il s’agit d’un minimum local ou d’un 

maximum local.  
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Le critère de Sylvester 
 
Dans cette partie, on étudie le critère de Sylvester, valable en toute dimension. 
Pour une matrice carrée quelconque ( )

 

( ), , 1,i j ni j n
M m

∈
= ∈ M  et un entier 

 

1,k n∈ , on définit le 

k-ième mineur principal comme étant le déterminant de la matrice ( )
 

( ), , 1,k i j ki j k
M m

∈
= ∈ M . On 

précise qu’une matrice carrée de taille n possède n mineurs principaux. 

Par exemple, les trois mineurs principaux de la matrice 
1 0 1
0 2 1
1 1 3

B
 
 

=  
 
 

 de la question Q10. sont les 

déterminants des matrices ( )1 2
1 0

1 ,
0 2

B B  
=  

 
 et 3

1 0 1
0 2 1
1 1 3

B B
 
 

= =  
 
 

. 

 
On dit qu’une matrice vérifie le critère de Sylvester si tous ses mineurs principaux sont strictement 
positifs. On souhaite alors démontrer la caractérisation suivante : 
 

Une matrice symétrique réelle est définie positive si et seulement si elle vérifie  
le critère de Sylvester. 

 
Par exemple, pour la matrice B de la question Q10., on constate que : 

( ) ( )1 2det 1 0, det 2 0B B= > = >   et  ( )3det 3 0.B = >  
 

La matrice B vérifie le critère de Sylvester, elle est donc définie positive. 
 
 

Q15. On fixe une matrice ( )nM ∈ M , un entier 
 

1,k n∈ , ainsi qu’un vecteur colonne 

( )
1

,1k k

k

x
X

x

 
 = ∈ 
 
 

 M . Déterminer un vecteur colonne ( ) { },1 \ 0nX ∈ M , tel que : 

T T
k k kX M X X MX= . 

 
Q16. Démontrer que toute matrice symétrique réelle définie positive vérifie le critère de Sylvester. 
 
 
Dans les deux questions suivantes, il s’agit de démontrer la réciproque, c’est-à-dire que toute 
matrice symétrique réelle vérifiant le critère de Sylvester est définie positive. Pour cela, on va 
raisonner par récurrence sur la taille n de la matrice. 
 
 

Q17. Soit 2n ≥  et soit une matrice symétrique ( )nM ∈ M  telle que ( )det 0M > . On écrit cette 
matrice par blocs sous la forme suivante : 

1
T

nM U
M

U α
− 

=   
 

  avec  ( )1 1n nM − −∈ M ,   ( )1,1nU −∈ M   et  α ∈ . 

 On suppose que la matrice 1nM −  est définie positive. 
 Justifier l’existence d’un vecteur colonne ( )1,1nV −∈ M  tel que 1 0n V UM − + = . 
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 En notant 1

1, 10 1
n

n

I V
Q −

−

 
=   
 

, démontrer alors que TQ MQ  s’écrit par blocs 1 1,1

1, 1

0

0
n n

n

M

β
− −

−

 
  
 

 avec 

0β > . 
 
Q18. Démontrer par récurrence que toute matrice symétrique réelle vérifiant le critère de Sylvester 

est définie positive. 
 

Q19. Pour quelles valeurs de x∈  la matrice ( )
2 1 0
1 1
0 1

C x x
x

 
 =  
 
 

 est-elle définie positive ? 

 

Q20. La matrice 

2 2 1 4 5
2 3 1 1 1
1 1 1 3 1
4 1 3 5 0
5 1 1 0 1

 
 − − 
 −
 
 
 − 

 est-elle définie positive ? Justifier.  

 
Q21. Démontrer que pour tout ( ) { }3, , \ 0x y z ∈  : 

2 2 24 2 3 0x y z xy xz+ + + − > . 
 

Q22. Pour quelles valeurs de *n∈  la matrice ( )

01 03
1

00
1

0 10 3

n nS

 
 
 
 = ∈
 
 
 
 





  


  

  





M  est-elle 

définie positive ? 
 

 
 
 



Problème

Q8. Tout d’abord, la matrice A est symétrique réelle.

Soit X =

(
x1

x2

)
∈ M2,1(R) ; on a

X⊤AX =
(
x1 x2

)(2 1
1 1

)(
x1

x2

)
= 2x2

1 + x1x2 + x2x1 + x2
2 = x2

1 + (x1 + x2)
2

Or x1 et x1 + x2 sont des réels, leurs carrés sont des réels positifs donc X⊤AX ⩾ 0 ; de plus, l’égalité
X⊤AX = 0 entrâıne x2

1 = (x1 + x2)
2 = 0 donc x1 = 0 puis x2 = 0. Par contraposée, si X ∈ M2,1(R) est

non nul alors X⊤AX > 0 ; par définition, A est définie positive.

Caractérisation spectrale

Q9. Il s’agit de redémontrer l’équivalence suivante :

Une matrice symétrique réelle M ∈ Mn(R) est définie positive si et seulement si ses valeurs propres
sont toutes strictement positives.

Supposons que M ∈ Mn(R) est symétrique définie positive. Soit λ ∈ R une valeur propre de M : en
prenant pour X un vecteur propre associé à λ, X est un vecteur non nul de Mn,1(R) donc X⊤MX > 0
d’après la définition de la définie-positivité ; d’autre part X⊤MX = X⊤(λX) = λ(X⊤X) et X⊤X est
égal au produit scalaire canonique (qui est défini positif) de X avec lui-même, donc X⊤X > 0 ; on en
déduit que λ > 0.

Supposons, réciproquement, que M est une matrice symétrique réelle à valeurs propres strictement posi-
tives. D’après le théorème spectral il existe une base orthonormée B = (ϵ1, . . . , ϵn) de Mn,1(R) constituée
de vecteurs propres de M , de valeurs propres respectives λ1, . . . , λn. Soit X ∈ Mn,1(R) : en notant
(x1, . . . , xn) le n-uplet de ses coordonnées dans la base B, on a

X⊤MX =
( n∑

i=1

xiϵi

)⊤
M

( n∑
j=1

xjϵj

)
=

n∑
i=1

n∑
j=1

xixj(ϵ
⊤
i Mϵj︸︷︷︸

=λjϵj

) =

n∑
i=1

n∑
j=1

xixjλj(ϵ
⊤
i ϵj︸︷︷︸

=δi,j

) =

n∑
i=1

λix
2
i

Pour tout i ∈ J 1, n K le terme λix
2
i est un réel positif, donc la somme X⊤MX est positive ; de plus, si cette

somme est nulle alors pour tout i ∈ J 1, n K on a λix
2
i = 0, donc xi = 0 puisque λi > 0, donc le vecteur X

est nul. Ainsi pour tout vecteur non nul X ∈ Mn,1(R) le réel X⊤MX est strictement positif : on conclut
que M est une matrice symétrique définie positive.

Q10. On étudie grossièrement la fonction polynomiale associée à P , qui est une fonction réelle continue sur R ;
en évaluant P en 0, en les racines de P ′(X) = 3X2 − 12X + 9 = 3(X − 1)(X − 3) et en considérant la
limite de P en +∞ on constate que

P (0) = −3 < 0, P (1) = 1 > 0, P (3) = −3 < 0, P (x) ∼
x→+∞

x3 −−−−−→
x→+∞

+∞

donc d’après le théorème des valeurs intermédiaires l’image de chacun des intervalles [ 0, 1 ], [ 1, 3 ] et
[ 3,+∞ [ est un intervalle contenant 0, donc P s’annule au moins une fois sur chaque intervalle ouvert
] 0, 1 [, ] 1, 3 [ et ] 3,+∞ [. Comme P est de degré 3, on conclut que P admet exactement trois racines
réelles distinctes α, β, γ telles que

0 < α < 1 < β < 3 < γ

en particulier, toutes les racines de P sont strictement positives.

La matrice B est symétrique réelle ; on calcule son polynôme caractéristique :

χB(X) =

∣∣∣∣∣∣
X − 1 0 −1

0 X − 2 −1
−1 −1 X − 3

∣∣∣∣∣∣ = (X − 1)(X − 2)(X − 3)− (X − 2)− (X − 1) = P (X)

Ainsi les valeurs propres de B, qui sont les racines α, β, γ de P , sont toutes strictement positives : d’après
la caractérisation spectrale rappelée à la question Q9., B est une matrice symétrique définie positive.

On peut aussi commencer par observer que P = χB ; B est diagonalisable en tant que matrice symétrique
réelle (théorème spectral), donc P (X) est scindé dans R[X]. On vérifie ensuite que les racines de P ′ ne
sont pas des racines de P , donc toute racine de P est simple : P possède trois racines réelles simples
distinctes. Enfin, pour tout réel x ⩽ 0 on a P (x) < 0 en tant que somme de réels négatifs et d’un réel
strictement négatif ; ainsi toute racine de P , donc toute valeur propre de B, est strictement positive, et
on conclut que la matrice symétrique B est définie positive à l’aide de la caractérisation spectrale.
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Un critère en dimension 2

Q11. Soit M une matrice symétrique définie positive, d’ordre n ⩾ 1. D’après le théorème spectral M est
diagonalisable dans Mn(R), donc sa trace et son déterminant sont respectivement égaux à la somme
et au produit de ses valeurs propres (comptées avec leurs ordres de multiplicité ; il s’agit d’une famille
non vide vu que n ⩾ 1) ; comme les valeurs propres sont des réels strictement positifs, il en résulte que
Tr(M) > 0 et det(M) > 0.

Q12. Soit M ∈ M2(R) une matrice symétrique telle que Tr(M) > 0 et det(M) > 0. D’après le théorème
spectral M possède deux valeurs propres réelles λ1, λ2 (non nécessairement distinctes) ; de la relation
λ1λ2 = det(M) > 0 on déduit que λ1 et λ2 sont des réels non nuls de même signe, et de la relation
λ1+λ2 = Tr(M) > 0 on déduit que λ1 et λ2 sont strictement positifs. D’après la caractérisation spectrale
rappelée à la question Q9., M est définie positive.

Remarque : ce critère est établi dans le cours sur l’optimisation au second ordre, dans le cas d’une fonction
de deux variables, où l’on établit que la matrice hessienne en un point critique est définie positive si et
seulement si (en notation de Monge) rt − s2 > 0 et r + t > 0 ; la question Q14. donne un exemple
d’application.

Q13. Non le critère ne se généralise pas à des matrices symétriques réelles d’ordre n > 2 ; on peut considérer

par exemple la matrice diagonale Diag(3,−I2, In−3) (explicitement pour n = 3 :

3 0 0
0 −1 0
0 0 −1

), qui est

symétrique réelle, de trace égale à n − 2 > 0 et déterminant égal à 3 > 0, mais qui possède des valeurs
propres négatives, donc n’est pas définie positive d’après la caractérisation spectrale de la question Q9..

Q14. La fonction f est rationnelle donc de classe C2 sur l’ouvert (R∗+)
2 ; ses dérivées partielles premières et

secondes ont pour expressions : pour tout (x, y) ∈ (R∗+)
2,

∂f

∂x
(x, y) = 1− 1

x2y
,

∂f

∂y
(x, y) = 1− 1

xy2
,

∂2f

∂x2
(x, y) =

2

x3y
,

∂2f

∂x∂y
(x, y) =

1

x2y2
,

∂2f

∂y2
(x, y) =

2

xy3
.

Les éventuels points d’extremum local de f sont des points critiques ; pour (x, y) ∈ (R∗+)
2 on a

∂f

∂x
(x, y) =

∂f

∂y
(x, y) = 0 ⇐⇒


1

x2y
= 1

1

x2y
=

1

xy2

⇐⇒ x = y = 1

donc le seul point critique de f est (1, 1). En ce point, la matrice hessienne de f est Hf(1, 1) =

(
2 1
1 2

)
;

sa trace et son déterminant sont strictement positifs (respectivement égaux à 4 et 3), donc d’après le
critère établi à la question Q12. Hf(1, 1) est définie positive. Il en résulte que

f admet un minimum local (strict) en (1, 1).

Il s’agit effectivement d’un point de minimum global : en utilisant l’inégalité entre moyenne arithmétique
et moyenne géométrique (ou la concavité du logarithme népérien), pour tout (x, y) ∈ (R∗+)

2 on a

f(x, y) = 3
x+ y + (xy)−1

3
⩾ 3 3

√
xy(xy)−1 = 3 = f(1, 1).

Le critère de Sylvester

Q15. Erreur d’énoncé : en général on ne peut pas imposer que X soit non nul si Xk est nul : par exemple si M
est définie positive alors pour tout vecteur X non nul on a X⊤MX > 0 alors que X⊤k MkXk = 0 lorsque
Xk = 0.

On peut effectuer des calculs par blocs. En posant X =

(
Xk

0n−k,1

)
∈ Mn,1(R) on obtient

X⊤MX =
(
X⊤k 01,n−k

)(Mk ∗
∗ ∗

)(
Xk

0n−k,1

)
=

(
X⊤k 01,n−k

)(MkXk + 0n−k,1
∗

)
= X⊤k MkXk + 0

et le vecteur X est non nul si et seulement si Xk est non nul.
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Q16. Soit M une matrice symétrique réelle définie positive et soit k ∈ J 1, n K. On considère un vecteur non nul
quelconque Xk ∈ Mk,1(R) : d’après la question Q15. il existe un vecteur non nul X ∈ Mn,1(R) tel que
X⊤k MkXk = X⊤MX, et ce réel est strictement positif car M est définie positive ; il en résulte que Mk est
définie positive, donc d’après la question Q11. on a det(Mk) > 0. Ainsi M vérifie le critère de Sylvester.

Q17. La matrice Mn−1 étant définie positive, son déterminant est strictement positif (question Q11.) donc
elle est inversible, et l’équation Mn−1V + U = 0 admet comme solution V = −M−1n−1U .
De plus, comme la matrice Mn−1 est symétrique on a aussi

V ⊤Mn−1 + U⊤ = V ⊤M⊤n−1 + U⊤ = (Mn−1V + U)⊤ = 01,n−1

À l’aide d’un calcul par blocs on obtient alors :

Q⊤MQ =

(
In−1 0n−1,1
V ⊤ 1

)(
Mn−1 U
U⊤ α

)(
In−1 V
01,n−1 1

)
=

(
In−1 0n−1,1
V ⊤ 1

)(
Mn−1 0n−1,1
U⊤ U⊤V + α

)
=

(
Mn−1 0n−1,1
01,n−1 U⊤V + α

)
donc en posant β = U⊤V + α on obtient la forme voulue : Q⊤MQ = Diag(Mn−1, β).

Enfin, on compare les déterminants, en observant que det(Q) = det(Q⊤) = 1 (déterminant d’une matrice
triangulaire par blocs) :

det(Mn−1)β = det
(
Diag(Mn−1, β)

)
= det(Q⊤MQ) = det(Q⊤) det(M) det(Q) = det(M)

or det(M) > 0 par hypothèse et det(Mn−1) > 0, donc β > 0.

Q18. On considère le prédicat

H(n) : si M ∈ Mn(R) est une matrice symétrique vérifiant le critère de Sylvester, alors M est
définie positive.

Dire qu’une matriceM = (m) ∈ M1(R) vérifie le critère de Sylvester signifie quem > 0, donc (x)⊤M(x) =
mx2 > 0 pour tout x ∈ R∖ {0} et la matrice M est définie positive : la proposition H(1) est vraie.
On suppose H(n− 1) pour un certain entier n ⩾ 2 et on considère une matrice symétrique M ∈ Mn(R)
qui vérifie le critère de Sylvester. Le déterminant de M est un mineur principal de M , donc det(M) > 0 ;
les autres mineurs principaux de M sont aussi les mineurs principaux de la sous-matrice Mn−1, qui
est également symétrique ; par hypothèse de récurrence H(n − 1), la matrice Mn−1 est définie positive.
D’après la question Q17., il existe une matrice Q inversible (en fait, triangulaire avec tous les coefficients
diagonaux égaux à 1) et un réel β > 0 tels que Q⊤MQ = Diag(Mn−1, β). Étant donné X ∈ Mn,1(R), on

écrit Q−1X =

(
Y
z

)
avec Y ∈ Mn−1,1(R) et z ∈ R ; on effectue un calcul par blocs :

X⊤MX =

(
Q

(
Y
z

))⊤
MQ

(
Y
z

)
=

(
Y ⊤ z

)
(Q⊤MQ)

(
Y
z

)
=

(
Y ⊤ z

)(Mn−1 0
0 β

)(
Y
z

)
= Y ⊤Mn−1Y + βz2

On a βz2 ⩾ 0 et Y ⊤Mn−1Y ⩾ 0 car Mn−1 est définie positive, donc X⊤MX ⩾ 0 ; de plus, l’égalité

X⊤MX = 0 entrâıne Y ⊤Mn−1Y = 0 et βz2 = 0, donc Y = 0 et z = 0, et finalement X = Q

(
Y
z

)
= 0

aussi. On a donc établi que la matrice M est définie positive, et que H(n− 1) implique H(n).
Par récurrence, on conclut queH(n) est valable pour tout n ∈ N∗, autrement dit : toute matrice symétrique
réelle vérifiant le critère de Sylvester est définie positive.

Q19. Pour tout réel x, la matrice C(x) est symétrique réelle ; ses mineurs principaux sont, dans l’ordre : 2, 1 et

detC(x) = 2− 1− 2x2 = 1− 2x2

Les deux premiers sont strictement positifs pour tout x, donc d’après le critère de Sylvester la matrice

C(x) est définie positive si et seulement si 1− 2x2 > 0, à savoir x ∈
]
− 1√

2
,
1√
2

[
Q20. On constate que la matrice de l’énoncé est symétrique réelle. En calculant dans l’ordre ses mineurs prin-

cipaux, on constate que le troisième est négatif :∣∣∣∣∣∣
2 2 1
2 3 −1
1 −1 1

∣∣∣∣∣∣ = 6− 2− 2− 3− 2− 4 < 0

D’après la condition nécessaire du critère de Sylvester, la matrice n’est pas définie positive
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Q21. La fonction q : (x, y, z) 7−→ 4x2 + y2 + z2 + 2xy − 3xz est polynomiale de degré 2, on peut l’exprimer
à l’aide de la formule de Taylor matricielle (le reste étant nul dans ce cas), par rapport à (0, 0, 0) : on a
q(0, 0, 0) = 0, la matrice jacobienne de q en (0, 0, 0) est nulle, donc en notant H la matrice hessienne de q

en (0, 0, 0) et X le vecteur colonne
(
x y z

)⊤
,

q(x, y, z) =
1

2
X⊤HX où H =

 8 2 −3
2 2 0
−3 0 2


Or les mineurs principaux de H valent dans l’ordre :

8,

∣∣∣∣8 2
2 2

∣∣∣∣ = 12,

∣∣∣∣∣∣
8 2 −3
2 2 0
−3 0 2

∣∣∣∣∣∣ = 6

en particulier ils sont tous strictement positifs ; d’après le critère de Sylvester la matrice symétrique réelle
H est définie positive, donc pour tout (x, y, z) ∈ R3 ∖ {0} le réel X⊤HX est strictement positif, donc
q(x, y, z) > 0.

Un raisonnement plus élémentaire consiste à décomposer l’expression en une somme de carrés, comme à
la question Q8. : pour tout (x, y, z) ∈ R3 on a

4x2 + y2 + z2 + 2xy − 3xz = (x+ y)2 +
(3
2
x− z

)2

+
3

4
x2 ⩾ 0

avec égalité si et seulement si les trois termes sont nuls, à savoir x = 0 (dernier terme) et y = z = 0.

Q22. Pour n ∈ N∗ la matrice Sn est symétrique réelle, et pour k ∈ J 1, n K son kème mineur principal est le
déterminant de la matrice Sk ; d’après le critère de Sylvester, Sn est définie positive si et seulement si
det(Sk) > 0 pour tout k ∈ J 1, n K. On calcule directement ce déterminant pour k ∈ {1, 2} : det(S1) =√
3 > 0 et det(S2) = 2 > 0 ; on forme ensuite une relation de récurrence d’ordre 2 pour k ⩾ 3 en

développant les déterminants selon une rangée :

det(Sk)
dév.Ck=

√
3 det(Sk−1)− 1 det

(
Sk−2 ∗
01,k−2 1

)
dév.Lk−1

=
√
3 det(Sk−1)− det(Sk−2)

On calcule alors (la résolution de cette relation de récurrence linéaire à coefficients constants est également
possible mais non nécessaire) :

det(S3) =
√
3 > 0, det(S4) = 1 > 0, det(S5) = 0

La matrice symétrique Sn est définie positive si et seulement si n ∈ {1, 2, 3, 4}.
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