
EXERCICE
(Noté 4 points sur 20)

On considère les matrices : A =

 1 −1 1
−1 1 1
−1 −1 3

 et I3 =

1 0 0
0 1 0
0 0 1

. Soient u et v deux vecteurs de R3, on pose

Vect(u, v) le sous-espace vectoriel de R3 engendré par u et v.

1. On pose f1 = (1, 1, 1) et F =
{

(x, y, z) ∈ R3 | x + y − z = 0
}

.

a) Déterminer deux vecteurs f2 et f3 de R3 tels que F = Vect(f2, f3), avec f2 = (a, 0, b) et f3 = (0, c, d), où a, b, c

et d sont à déterminer.
b) Montrer que la famille (f1, f2, f3) est une base de R3.

2.a) Vérifier que A2 − 3A + 2I3 =O3, avec O3 =

0 0 0
0 0 0
0 0 0

 la matrice nulle.

b) En déduire que A est inversible et déterminer son inverse A−1.

3.a) Déterminer les deux réels α et β tels que : A

1
1
1

 = α

1
1
1

, A

a

0
b

 = β

a

0
b

 et A

0
c

d

 = β

0
c

d

, où a, b, c

et d sont les réels trouvés dans la question 1. a).
b) Montrer qu’il existe une matrice diagonale D et une matrice P inversible, qui sont à déterminer, telles que

A = PDP −1.
c) Montrer, par récurrence sur n, que pour tout entier naturel n, An = PDnP −1.
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PROBLÈME

On désigne par n un entier naturel non nul et K = R ou C.
On note Mn(K) l’espace vectoriel des matrices carrées d’ordre n à coefficients dans K, In la matrice unité de Mn(K)
et Mn,1(K) désigne l’espace vectoriel réel des matrices colonnes à n lignes.
Pour une matrice M de Mn(K), on désigne par χM (X) = det(XIn − M) le polynôme caractéristique de M .
On note Mᵀ la matrice transposée de la matrice M et Tr(M) la trace de la matrice carrée M .
On rappelle que pour toute matrice M = (mi,j)1≤i,j≤n ∈ Mn(K), Tr(M) =

n∑
i=1

mii.

On note Diag(a1, . . . , an) la matrice diagonale de Mn(K) qui admet pour coefficients diagonaux les réels a1, . . . , an

dans cet ordre. On désigne par Sn(R) l’ensemble des matrices symétriques de Mn(R), c’est-à-dire ∀S ∈ Sn(R), Sᵀ = S.
On note S+

n (R) l’ensemble des matrices S de Sn(R) telles que, ∀X ∈ Mn,1(R), XᵀSX ≥ 0.
R+ désigne l’ensemble des réels positifs et R∗+ désigne l’ensemble des réels strictement positifs.

Le problème traite des propriétés et des applications qui sont autour de la notion de trace.

PARTIE 1
Préliminaires

1. Montrer que l’application Tr : Mn(R) → R, M 7→ Tr(M), est linéaire.

2. Soient M = (mi,j)1≤i,j≤n et N = (ni,j)1≤i,j≤n deux matrices de Mn(R).

a) Montrer que Tr(MN) =
n∑

l=1

n∑
k=1

ml,k nk,l.

b) Montrer que Tr(MN) = Tr(NM).
c) Montrer que si M et N sont semblables dans Mn(R) alors Tr(M) = Tr(N).

3. On considère l’ensemble F =
{

M ∈ Mn(R) | M est diagonale et Tr(M) = 0
}

.

a) Montrer que F est un sous-espace vectoriel de Mn(R).
b) Déterminer la dimension de F .
c) En déduire que, pour toute matrice inversible P de Mn(R), la dimension du R-espace vectoriel G = PFP −1 ={

M ∈ Mn(R) | M = PDP −1 et D ∈ F
}

.

4. Soit A une matrice de Mn(R). On considère l’application,

ΦA : Mn(R) → Mn(R) ; X 7→ X + Tr(X).A

a) Vérifier que ΦA est une application linéaire.
Soit B une matrice de Mn(R). On considère l’équation matricielle :

(∗) ΦA(X) = B

b) On suppose dans cette question que Tr(A) 6= −1.

i) On suppose que M est une solution de l’équation matricielle (∗). Déterminer Tr(M) en fonction de Tr(A) et
de Tr(B).

ii) Résoudre dans Mn(R) l’équation matricielle (∗).
iii) En déduire que ΦA est un automorphisme d’espaces vectoriels.

c) On suppose maintenant que Tr(A) = −1.

2



i) Résoudre dans Mn(R), selon les valeurs de Tr(B), l’équation matricielle (∗).
ii) Montrer que ΦA est un projecteur sur un sous-espace vectoriel F1 de Mn(R) parallèlement à un sous-espace

vectoriel F2 de Mn(R), déterminer F1 et F2.

PARTIE 2
La valeur absolue de la trace comme étant une "fonction génératrice"

Dans cette partie, on note E = Mn(K). On rappelle que E est un K-espace vectoriel de dimension n2 et que sa base
canonique est (Ei,j)1≤i,j≤n, où pour tous entiers i et j tels que 1 ≤ i, j ≤ n, Ei,j désigne la matrice de E dont tous
les coefficients sont nuls sauf celui de la ième ligne et la jème colonne qui est égal à 1. Pour tous entiers h et k tels que

1 ≤ h, k ≤ n, on désigne par δh,k le symbole de Kronecker qui est défini par δh,k =

1 si h = k

0 si h 6= k
.

On rappelle que pour tous entiers naturels i, j, k, l tels que 1 ≤ i, j, k, l ≤ n, Ei,jEk,l = δj,kEi,l. Une application q de
E sur R+ est dite semi-norme sur E , si elle vérifie :

• ∀M ∈ E , ∀λ ∈ K, q(λM) = |λ|q(M).
• ∀(M, N) ∈ E2, q(M + N) ≤ q(M) + q(N).

On dit qu’une semi-norme q sur E vérifie la propriété (P) si ∀(M, N) ∈ E2, q(MN) = q(NM).

1. Soit q une semi-norme sur E .

a) Montrer que q(On) = 0, où On est la matrice nulle de E , et que pour tout M de E , q(−M) = q(M).
b) Montrer que pour tout (M, N) de E2, |q(M) − q(N)| ≤ q(M + N).
c) Montrer que pour tout (M, N) de E2, si q(N) = 0 alors q(M + N) = q(M).

2. On considère l’application f définie de E dans R+ par f(M) = |Tr(M)|. Montrer que f est une semi-norme sur
E qui vérifie la propriété (P).

Dans les questions 3. et 4. de cette partie, on suppose que n ≥ 2.
3. Soit (α1, . . . , αn) une famille d’éléments de K et soient A et B deux matrices de E telles que,

A =
n∑

j=1
E1,j +

n∑
i=2

Ei,i et B =
n∑

h=1
αhEh,1

a) Montrer que AB =

 n∑
j=1

αj

 E1,1 +
n∑

i=2
αiEi,1.

b) Montrer que BA =
n∑

h=1

αh

n∑
j=1

Eh,j

.

4. Soit q une semi-norme sur E qui vérifie la propriété (P).
Soit M = (mi,j)1≤i,j≤n un élément de E .

a) Montrer que pour tous entiers distincts i et j tels que 1 ≤ i, j ≤ n, q(Ei,j) = 0, (on pourra utiliser le fait que
Ei,j = Ei,iEi,j).

b) En déduire que q

(
n∑

i=2
mi,1Ei,1

)
= 0.

c) Vérifier que q(M) = q

(
n∑

i=1
mi,iEi,i

)
.

d) Montrer, en prenant des valeurs précises pour (αk)1≤k≤n qui définissent la matrice B, que q(M) = q(BA).
e) Montrer qu’il existe un réel positif α tel que q = αf .

5. Dans le cas où n = 1, le résultat démontré ci-dessus reste-t-il valable ? justifier votre réponse.

3



PARTIE 3
Caractérisation d’une matrice de S+

n (R) par la notion de trace

O(n) désigne le groupe des matrices orthogonales de Mn(R), c’est-à-dire des matrices M de Mn(R) vérifiant MᵀM =
In.

1. On considère une matrice S de S+
n (R).

a) Soit la matrice D = Diag(λ1, λ2, . . . , λn) telle que pour tout entier k, 1 ≤ k ≤ n, λk sont des réels positifs. Soit
U = (uk,j)1≤k,j≤n une matrice de O(n).

i) Montrer que pour tous entiers k et i, 1 ≤ k, i ≤ n, |uk,i| ≤ 1.
ii) Vérifier que DU = (λkuk,j)1≤k,j≤n.

iii) En déduire que Tr(DU) ≤ Tr(D).

b) Soit U une matrice de O(n).

i) Montrer qu’il existe une matrice P de O(n) et une matrice D = Diag(α1, . . . , αn), avec pour tout entier i,
1 ≤ i ≤ n, ai sont des réels positifs et S = P.D.tP .

ii) Montrer, en posant V = P ᵀUP , que SU = P (DV )P ᵀ.
iii) En déduire que Tr(SU) ≤ Tr(S).

2. Réciproquement, soit A = (ai,j)1≤i,j≤n une matrice de Mn(R) telle que,

∀U ∈ O(n) Tr(AU) ≤ Tr(A)

a)i) Montrer que, pour tous réels a, b, α, il existe un réel ϕ tel que, a cos α + b sin α =
√

a2 + b2 sin(α + ϕ).
ii) En déduire que, si pour tout réel α, a cos α + b sin α ≤ a alors b = 0.

b) Soit B = (e1, e2, . . . , en) une base orthonormée de l’espace euclidien Rn pour son produit scalaire usuel. On
note, pour tous entiers p et q tels que 1 ≤ p < q ≤ n, Πp,q le plan engendré par la famille (ep, eq). On considère
up,q l’endomorphisme de Rn tel que la restriction de up,q sur Πp,q est la rotation du plan Πp,q d’angle α et la
restriction de up,q sur l’orthogonal de Πp,q est l’application identité de l’orthogonal de Πp,q.

i) Écrire la matrice U1,2 de u1,2 relativement à la base B et montrer que U1,2 est une matrice orthogonale de
Mn(R).

ii) Calculer Tr(AU1,2) en fonction de a1,2, a2,1, (ai,i)1≤i≤n et de α.
iii) En déduire que a1,2 = a2,1.
iv) Écrire, dans le cas général, la matrice Up,q de up,q relativement à la base B.
v) Calculer, dans le cas général, Tr(AUp,q) en fonction de ap,q, aq,p, (ai,i)1≤i≤n et de α.

vi) En déduire que A est une matrice symétrique.

c)i) Justifier qu’il existe une base orthonormée V = (v1, v2, . . . , vn) de Rn formée de vecteurs propres de l’endo-
morphisme g canoniquement associée à la matrice A.
Pour tout entier i tel que 1 ≤ i ≤ n, on note γi la valeur propre de g associée au vecteur propre vi.

ii) Soit j un entier tel que 1 ≤ j ≤ n. On considère l’endomorphisme wj de Rn défini par wj(vj) = −vj et pour
tout entier k tel que 1 ≤ k ≤ n et k 6= j, wj(vk) = vk.
Soit Wj la matrice de l’endomorphisme wj relativement à la base B.
Vérifier que Wj est une matrice orthogonale de Mn(R) et déterminer Tr(AWj) en fonction de Tr(A) et de
γj . En déduire que γj ≥ 0.

d) En déduire que A ∈ S+
n (R).

FIN DE L’ÉPREUVE
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EXERCICE

1. On pose f1 = (1, 1, 1) et F =
{

(x, y, z) ∈ R3 | x + y − z = 0
}

.

a) Soit f = (x, y, z) ∈ F , donc z = x + y, ce qui donne

f = (x, y, x + y) = x(1, 0, 1) + y(0, 1, 1)

Soit f2 = (1, 0, 1) et f3 = (0, 1, 1). La famille (f2, f3) est génératrice de F , ainsi, F = Vect(f2, f3).

b) Nous avons f1 = (1, 1, 1), f2 = (1, 0, 1) et f3 = (0, 1, 1).
Le déterminant de la famille (f1, f2, f3) dans la base canonique de R3 est égal à∣∣∣∣∣∣∣∣

1 1 0
1 0 1
1 1 1

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣0 1
1 1

∣∣∣∣∣∣−

∣∣∣∣∣∣1 1
1 1

∣∣∣∣∣∣ = (−1) − (1 − 1) = −1

Donc la famille (f1, f2, f3) est libre, de cardinal 3, donc c’est une base de R3.

2.a) On vérifie que :

A2 =


1 −1 1

−1 1 1
−1 −1 3




1 −1 1
−1 1 1
−1 −1 3

 =


1 −3 3

−3 1 3
−3 −3 7


et

A2 − 3A + 2I3 =


1 −3 3

−3 1 3
−3 −3 7

−


3 −3 3

−3 3 3
−3 −3 9

+


2 0 0
0 2 0
0 0 2

 =


0 0 0
0 0 0
0 0 0


Ainsi A2 − 3A + 2I3 = O3 .

b) On a A2 − 3A + 2I3 = O3, on peut écrire 3A − A2 = 2I3, donc A
( 1

2 (3I3 − A)
)

= I3.

Ainsi A est inversible et son inverse est A−1 = 1
2 (3I3 − A) = 1

2


2 1 −1
1 2 −1
1 1 0

 .

1. Tous mes corrigés sont disponibles ici https://tinyurl.com/4up84xze 26-05-2025
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3.a) On prend ici f1 = (1, 1, 1)ᵀ, f2 = (1, 0, 1)ᵀ et f3 = (0, 1, 1)ᵀ. On vérifie facilement que Af1 = f1, Af2 = 2f2 et
Af3 = 2f3. Donc α = 1, β = 2.

b) D’après les questions Q1.b et Q3.a, (f1, f2, f3) est une base de R3, formée de vecteurs propres de A.

Donc la matrice A est diagonalisable, et on a A = PDP −1 avec : P =


1 1 0
1 0 1
1 1 1

 (La matrice de passage de la

base canonique vers la base (f1, f2, f3) ), et D =


1 0 0
0 2 0
0 0 2

. On a aussi P −1 =


1 1 −1
0 −1 1

−1 0 1

.

c) Se fait simplement par récurrence sur n.

Pour n = 0, A0 = PD0P −1 = I3.
Supposons le pour un entier n ≥ 0, donc

An+1 = AnA = (PDnP −1)(PDP −1) = PDn(P −1P )DP −1 = PDnI3DP −1 = PDn+1P −1

donc c’est vraie pour n + 1.
Conclusion : An = PDnP −1 pour tout entier naturel n.
Dans notre cas

An =


1 1 0
1 0 1
1 1 1




1 0 0
0 2n 0
0 0 2n




1 1 −1
0 −1 1

−1 0 1

 =


1 1 − 2n 2n − 1

1 − 2n 1 2n − 1
1 − 2n 1 − 2n 2n+1 − 1


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PROBLÈME
PARTIE 1
Préliminaires

1. Soient M = (mi,j)1≤i,j≤n, N = (ni,j)1≤i,j≤n deux matrices de Mn(R) et λ ∈ R.
M + λN est la matrice de terme général (mi,j + λni,j). On a

Tr(M + λN) =
n∑

i=1
(mi,i + λni,i) =

n∑
i=1

mi,i + λ

n∑
i=1

ni,i

Donc, Tr(M + λN) = Tr(M) + λTr(N) . L’application Tr est linéaire.

2. Soient M = (mi,j)1≤i,j≤n et N = (ni,j)1≤i,j≤n deux matrices de Mn(R).

a) Soit P = MN = (pi,j)1≤i,j≤n. On a

pi,j =
n∑

k=1
mi,knk,j .

Donc,

Tr(MN) =
n∑

l=1
pl,l =

n∑
l=1

(
n∑

k=1
ml,knk,l

)
=

n∑
l=1

n∑
k=1

ml,knk,l

b) Soit Q = NM = (qi,j)1≤i,j≤n, on a

qi,j =
n∑

l=1
ni,lml,j .

D’après Q2.a), Tr(MN) =
n∑

l=1

n∑
k=1

ml,knk,l.

On permute les deux sommes

Tr(MN) =
n∑

l=1

n∑
k=1

ml,knk,l =
n∑

k=1

n∑
l=1

ml,knk,l =
n∑

k=1
qk,k = Tr(NM)

Ainsi, Tr(MN) = Tr(NM) .

c) Si M et N sont semblables, il existe une matrice inversible P ∈ Mn(R) telle que N = PMP −1. Alors

Tr(N) = Tr(P
(
MP −1)) = Tr(

(
MP −1)P ) = Tr(M

(
P −1P

)
) = Tr(M)

Donc, les matrices semblables ont la même trace.

3. On considère l’ensemble F =
{

M ∈ Mn(R) | M est diagonale et Tr(M) = 0
}

.

a) Montrons que F est un sous-espace vectoriel de Mn(R).

• La matrice nulle On est diagonale et Tr(On) = 0, donc On ∈ F . F n’est pas vide.

• Soient M1, M2 ∈ F et λ ∈ R. M1 et M2 sont diagonales, donc M1 +λM2 est une matrice diagonale. Tr(M1) = 0
et Tr(M2) = 0. Par linéarité de la trace, Tr(M1 + λM2) = Tr(M1) + λTr(M2) = 0. Donc M1 + λM2 ∈ F .

Ainsi F est un sous-espace vectoriel de Mn(R).
Autre méthode : On a F = Dn(R)∩Ker (Tr), avec Dn(R) le sous-espace vectoriel de Mn(R) formé des matrices
diagonales.
Donc F est un sous-espace vectoriel de Mn(R)
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b) On a

M ∈ F ⇔ M = Diag(a1, ..., an) et a1 + ... + an = 0

⇔ M = Diag
(
a1, ..., −(a1 + ... + an−1)

)
⇔ M =

n−1∑
i=1

ai

(
Ei,i − En,n

)
La famille

(
Ei,i − En,n

)
1≤i≤n−1est génératrice de F et dim(F ) = n − 1 .

Autre méthode : L’application Tr|Dn(R) : Dn(R) → R est une forme linéaire non nulle. Son image est donc R, de
dimension 1. F = Ker(Tr|Dn(R)). D’après le théorème du rang, dim(F ) =dim(Dn(R))−dim(Im(Tr|Dn(R))) = n − 1.

c) Soit P une matrice inversible de Mn(R) et G = PFP −1 =
{

M ∈ Mn(R) | M = PDP −1 et D ∈ F
}

.

Considérons l’application ϕP : Mn(R) → Mn(R) définie par ϕP (X) = PXP −1.
ϕP est un isomorphisme de l’espace vectoriel Mn(R) ((ϕP )−1 = ϕP −1), donc elle conserve la dimension des sous-
espaces.
Comme G = ϕP (F ), alors dim(G) =dim(F ) = n − 1.
Ainsi dim(G) = n − 1 .

4. Soit A une matrice de Mn(R). On considère l’application,

ΦA : Mn(R) → Mn(R) ; X 7→ X + Tr(X).A

a) Soient X1, X2 ∈ Mn(R) et λ ∈ R.

ΦA(X1 + λX2) = (X1 + λX2) + Tr(X1 + λX2)A

= X1 + λX2 + (Tr(X1) + λTr(X2))A

= (X1 + Tr(X1)A) + λ(X2 + Tr(X2)A)

= ΦA(X1) + λΦA(X2).

Donc ΦA est linéaire.

Soit B une matrice de Mn(R). On considère l’équation matricielle :

(∗) ΦA(X) = B

b) On suppose dans cette question que Tr(A) 6= −1.

i) Si M est solution de (∗) alors, M + Tr(M)A = B. Appliquons la trace aux deux membres :

Tr(M + Tr(M)A) = Tr(M) + Tr(Tr(M)A) = Tr(M)(1 + Tr(A)) = Tr(B)

Puisque Tr(A) 6= −1, 1 + Tr(A) 6= 0 alors Tr(M) = Tr(B)
1 + Tr(A) .

ii) Si M est solution de (∗) alors, M = B − Tr(M)A.
En substituant la valeur de Tr(M) trouvée précédemment : M = B − Tr(B)

1 + Tr(A)A.
Réciproquement, vérifions si cette expression de M est bien solution.
Soit M0 = B − Tr(B)

1 + Tr(A)A. On a

Tr(M0) = Tr
(

B − Tr(B)
1 + Tr(A)A

)
= Tr(B) − Tr(B)

1 + Tr(A)Tr(A) = Tr(B)
1 + Tr(A)

Donc
ΦA(M0) = M0 + Tr(M0)A =

(
B − Tr(B)

1 + Tr(A)A

)
+ Tr(B)

1 + Tr(A)A = B.
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Ainsi M = B − Tr(B)
1 + Tr(A)A est l’unique solution de l’équation (∗).

iii) ΦA est un endomorphisme de Mn(R).
Pour toute matrice B ∈ Mn(R), l’équation ΦA(X) = B admet une solution unique. Ceci signifie que ΦA est
bijective. Donc ΦA est un automorphisme de Mn(R).

c) On suppose maintenant que Tr(A) = −1.

i) Dans l’équation X + Tr(X)A = B, on compose avec la trace :

Tr(B) = Tr(X) + Tr(X)Tr(A) = Tr(X) − Tr(X) = 0

Cas 1 : Si Tr(B) 6= 0. L’équation (∗) n’a aucune solution.
Cas 2 : Si Tr(B) = 0. La condition nécessaire est satisfaite.
On remarque que B est solution particulière de (∗).
Soit X une autre solution de (∗), posons Y = X − B sont solutions de (∗), alors

B = X + Tr(X)A = Y + B + Tr(Y + B)A = Y + B + Tr(Y )A

par suite
Y + Tr(Y )A = 0

Autrement dit Y est colinéaire avec A et X = B − Tr(Y )A.
Réciproquement, soit t ∈ R. Posons X = B − tA.
Alors Tr(X) = Tr(B) − tTr(A) = t et X + Tr(X)A = X + tA = B. Par suite X est une solution de (∗).
Ainsi, si Tr(B) = 0, l’ensemble des solutions de (∗) est

{
B − tA | t ∈ R

}
.

ii) Montrons que ΦAest une projection.

• Vérifions que ΦA ◦ ΦA = ΦA.
On a

ΦA(ΦA(X)) = ΦA(X + Tr(X)A) = (X + Tr(X)A) + Tr(X + Tr(X)A)A

et
Tr(X + Tr(X)A) = Tr(X) + Tr(X)Tr(A) = Tr(X) − Tr(X) = 0

donc
ΦA (ΦA(X)) = ΦA(X).

ΦA est bien un projecteur.

• ΦA est une projection sur F1 = Im(ΦA) parallèlemnt à F2 = Ker(ΦA).
Soit Y ∈ Im(ΦA). Alors Y = ΦA(X) pour un certain X. On a

Tr(Y ) = Tr(ΦA(X)) = Tr (X + Tr(X)A) = Tr (X) + Tr(X)Tr(A) = 0.

Donc Im(ΦA) ⊆ Ker(Tr).
Réciproquement, si Y ∈ Ker(Tr), alors ΦA(Y ) = Y + Tr(Y )A = Y . Donc Y ∈ Im(ΦA).
Ainsi, F1 = Im(ΦA) = Ker(Tr) = {M ∈ Mn(R) | Tr(M) = 0} .
On a F2 = Ker(ΦA), c’est l’ensemble des solutions de (∗) avec B = On.
D’après i) on a Ker(ΦA) =

{
−tA | t ∈ R

}
.

Ainsi F2 = Ker(ΦA) = Vect(A) .
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PARTIE 2
La valeur absolue de la trace comme étant une "fonction génératrice"

1. Soit q une semi-norme sur E .

a) On a
q(On) = q(0.On) = |0|q(On) = 0,

et
q(−M) = q((−1)M) = | − 1|q(M) = q(M).

b) Soit (M, N) de E2, on a par l’inégalité triangulaire :

q(M) = q(M + N − N) ≤ q(M + N) + q(−N).

Comme q(−N) = q(N), on a q(M) ≤ q(M + N) + q(N), d’où

q(M) − q(N) ≤ q(M + N). (1)

De même on a
q(N) − q(M) ≤ q(M + N).(2)

Les inégalités (1) et (2) impliquent |q(M) − q(N)| ≤ q(M + N) .

c) Soit (M, N) de E2, supposons que q(N) = 0.
L’inégalité triangulaire donne :

q(M + N) ≤ q(M) + q(N) = q(M).

D’après b)
q(M) = q(M) − q(N) ≤ q(M + N).

Ces deux inégalités entraînent q(M + N) = q(M) .

2. On considère l’application f définie de E dans R+ par f(M) = |Tr(M)|. Montrons que f est une semi-norme sur E
qui vérifie la propriété (P).

• On a

• f(λM) = |Tr(λM)| = |λTr(M)| = |λ||Tr(M)| = |λ|f(M).

• f(M +N) = |Tr(M +N)| = |Tr(M)+Tr(N)|. Par l’inégalité triangulaire : |Tr(M)+Tr(N)| ≤ |Tr(M)|+ |Tr(N)|.
Donc f(M + N) ≤ f(M) + f(N).

f est donc une semi-norme.
Soit (M, N) de E2, on a

f(MN) = |Tr(MN)| = |Tr(NM)| = f(NM)

Donc f vérifie (P).

On suppose que n ≥ 2.
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3. Soit (α1, . . . , αn) une famille d’éléments de K et soient A et B deux matrices de E telles que,

A =
n∑

j=1
E1,j +

n∑
i=2

Ei,i =



1 1 1 · · · 1
0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . . 1 0

0 · · · · · · 0 1


et

B =
n∑

h=1
αhEh,1 =


α1 0 · · · 0
α2 0 · · · 0
...

...
...

αn 0 · · · 0


a) On a

AB =

 n∑
j=1

E1,j +
n∑

i =2
Ei ,i

( n∑
h=1

αhEh,1

)

=
n∑

j=1

n∑
h=1

αhE1,jEh,1 +
n∑

i =2

n∑
h=1

αhEi ,i Eh,1

=
n∑

j=1

n∑
h=1

αhδj,hE1,1 +
n∑

i =2

n∑
h=1

αhδi ,hEi ,1

=
n∑

j=1
αjE1,1 +

n∑
i =2

αi Ei ,1

Donc AB =

 n∑
j=1

αj

E1,1 +
n∑

i=2
αiEi,1 .

b) On a

BA =
(

n∑
h=1

αhEh,1

) n∑
j=1

E1,j +
n∑

i =2
Ei ,i


=

n∑
h=1

n∑
j=1

αhEh,1E1,j +
n∑

h=1

n∑
i =2

αhEh,1Ei,i

=
n∑

h=1

n∑
j=1

αhδ1,1Eh,j +
n∑

h=1

n∑
i =2

αhδ1,i Eh,i

la deuxième somme est nulle car δ1,i = 0 pour tout i ≥ 2, donc BA =
n∑

h=1

n∑
j=1

αhEh,j .

Ainsi BA =
n∑

h=1
αh

 n∑
j=1

Eh,j

 .

4. Soit q une semi-norme sur E qui vérifie la propriété (P).
Soit M = (mi,j)1≤i,j≤n un élément de E .

a) Soit deux entiers distincts i et j tels que 1 ≤ i, j ≤ n.

On a Ei,j = Ei,iEi,j . Par la propriété (P),

q(Ei,iEi,j) = q(Ei,jEi,i) = q (δj,iEi,i) = δj,iq (Ei,i) .
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Comme i 6= j, alors δji = 0, donc q(Ei,iEi,j) = 0.
Ainsi, q(Ei,j) = 0 pour i 6= j .

b) Par l’inégalité triangulaire :

q

(
n∑

i=2
mi,1Ei,1

)
≤

n∑
i=2

q(mi,1Ei,1) =
n∑

i=2
|mi,1|q(Ei,1).

Pour i ∈ {2, . . . , n}, i 6= 1, donc q(Ei,1) = 0.
Alors

q

(
n∑

i=2
mi,1Ei,1

)
≤ 0

Comme q est à valeurs dans R+, on conclut que q

(
n∑

i=2
mi,1Ei,1

)
= 0 .

c) On écrit

M =
∑

1≤i,j≤n

mi,jEi,j =
n∑

i=1
mi,iEi,i +

∑
i6=j

mi,jEi,j .

Posons DM =
n∑

i=1
mi,iEi,i et N =

∑
i6=j

mi,jEi,j .

On a

q(N) = q

∑
i 6=j

mi,jEi,j

 ≤
∑
i 6=j

|mi,j |q(Ei,j).

D’après Q4.a), q(Ei,j) = 0 pour i 6= j, donc q (N) ≤ 0,ce qui implique q (N) = 0.

D’après Q1.c), si q(N) = 0, alors q(M) = q(DM + N) = q(D). Donc q(M) = q(DM ) = q

(
n∑

i=1
mi,iEi,i

)
.

d) D’après Q4.c), q(M) = q(DM ) où DM =
n∑

i=1
mi,iEi,i.

De même, q(BA) = q(DBA) où DBA est la partie diagonale de BA. D’après Q3.b),

BA =
n∑

h=1
αh

 n∑
j=1

Eh,j

 =
n∑

h=1

n∑
j=1

αhEh,j .

La partie diagonale de BA est

DBA =
n∑

h=1
αhEh,h.

Choisissons αk = mk,k pour k = 1, . . . , n. Ce qui donne

DBA =
n∑

h=1
mh,hEh,h = DM .

Alors q(DBA) = q(DM ). Donc
q(BA) = q(DBA) = q(DM ) = q(M)

Ainsi q(M) = q(BA) avec αk = mk,k pour k = 1, . . . , n .

e) Utilisons les matrices A et B de la question Q3, avec le choix αk = mk,k.
D’après Q3.a),

AB =

 n∑
j=1

mj,j

E1,1 +
n∑

i=2
mi,iEi,1 = Tr(M)E1,1 +

n∑
i=2

mi,iEi,1.
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D’après Q4.b) q

(
n∑

i=2
mi,iEi,1

)
= 0. D’après Q1.c), on a

q(AB) = q(Tr(M)E1,1 +
n∑

i=2
mi,iEi,1) = q(Tr(M)E1,1) = |Tr(M)|q(E1,1)

Donc q = αf avec α = q(E1,1) ≥ 0 .

5. Si n = 1, E = M1(K). Une matrice M ∈ M1(K) est de la forme M = (m1,1) = m1,1E1,1 avec Tr(M) = m11.
Donc f(M) = |Tr(M)| = |m11|.
Soit q une semi-norme sur M1(K), alors q(M) = q(m11E11) = |m11|q(E11). Soit
On a q(M) = αf(M), avecα = q(E11). Le résultat q = αf reste donc valable pour n = 1.

PARTIE 3
Caractérisation d’une matrice de S+

n (R) par la notion de trace

O(n) désigne le groupe des matrices orthogonales de Mn(R), c’est-à-dire des matrices M de Mn(R) vérifiant MᵀM = In.

1. On considère une matrice S de S+
n (R).

a) Soit la matrice D = Diag(λ1, λ2, . . . , λn) telle que pour tout entier k, 1 ≤ k ≤ n, λk sont des réels positifs. Soit
U = (ui,j)1≤i,j≤n une matrice de O(n).

i) On a U ∈ O(n), donc les colonnes, C1, . . . , Cn, de U , forment une base orthonormée de Rn pour le produit
scalaire usuel.
Pour j ∈ J1, nK on a Cj = (u1,j , ..., un,j)ᵀ. On a donc pour i ∈ J1, nK

|ui,j | ≤ ‖Cj‖2 =

√√√√ n∑
i=1

u2
i,j = 1

Donc |ui,j | ≤ 1, pour tout i, j ∈ J1, nK .

ii) On a U = (ui,j)1≤i,j≤n et D = (λiδi,j)1≤i,j≤n.

Posons DU = (ci,j)1≤i,j≤n. Alors pour i, j ∈ J1, nK

ci,j =
n∑

k=1
λiδi,kuk,j = λiui,j .

Donc DU = (λiui,j)1≤i,j≤n .

iii) On a

Tr(DU) =
n∑

k=1
ck,k =

n∑
k=1

λkuk,k.

Puisque λk ≥ 0 et uk,k ≤ |uk,k| ≤ 1, alors

Tr(DU) =
n∑

k=1
λkuk,k ≤

n∑
k=1

λk = Tr(D).

Donc Tr(DU) ≤ Tr(D) .

b) Soit U une matrice de O(n).
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i) S ∈ Sn(R). D’après le théorème spectral, S est diagonalisable dans une base orthonormée de vecteurs propres.
Il existe donc une matrice orthogonale P ∈ O(n) (P −1 = P ᵀ ) et une matrice diagonale D = Diag(α1, . . . , αn)
(dont les coefficients diagonaux ai sont les valeurs propres de S) telles que S = PDP −1 = PDP ᵀ.
De plus, S ∈ S+

n (R), ce qui est équivalent à Sp (S) ⊂ R+,donc les valeurs propres αi sont positives.
( Si Vi est un vecteur propre associé à αi, alors V ᵀ

i SVi = V ᵀ
i (αiVi) = αiV

ᵀ
i Vi = αi‖Vi‖2 ≥ 0)

ii) Posons V = P ᵀUP , on a S = PDP ᵀ. Donc

SU = (PDP ᵀ)U = PD(P ᵀUP )P ᵀ = PDV P ᵀ.

Ainsi, SU = P (DV )P ᵀ .

iii) On a SU = P (DV )P ᵀ. Donc SU est semblable à DV et

Tr(SU) = Tr(DV )

Comme O(n) est un groupe et P, U ∈ O(n), alors

V = P ᵀUP = P −1UP ∈ O(n)

de plus D = Diag(α1, . . . , αn) avec αi ≥ 0.
D’après la question Q1.a)iii), Tr(DV ) ≤ Tr(D).
Donc

Tr(SU) = Tr(DV ) ≤ Tr(D) = Tr(S)

Ainsi Tr(SU) ≤ Tr(S) .

2. Soit A = (ai,j)1≤i,j≤n une matrice de Mn(R) telle que,

∀U ∈ O(n) Tr(AU) ≤ Tr(A)

a)i) Soit a, b, α, des réels

• Si (a, b) = (0, 0), le résultat est trivial.

• Si (a, b) 6= (0, 0), alors
√

a2 + b2 6= 0. On peut écrire :

a cos (α) + b sin (α) =
√

a2 + b2
(

a√
a2 + b2

cos (α) + b√
a2 + b2

sin (α)
)

.

Soit x0 = b√
a2 + b2

et y0 = a√
a2 + b2

. On a x2
0 + y2

0 = 1.
Donc il existe un angle ϕ tel que x0 = cos ϕ et y0 = sin ϕ.
L’expression devient

√
a2 + b2(sin ϕ cos (α) + cos ϕ sin (α)) =

√
a2 + b2 sin(α + ϕ).

Ainsi, il existe ϕ tel que a cos (α) + b sin (α) =
√

a2 + b2 sin(α + ϕ) .

ii) Si pour tout réel α, a cos (α) + b sin (α) ≤ a.

Alors
√

a2 + b2 sin(α + ϕ) ≤ a pour tout α. En particulier, pour α = π

2 − ϕ, on obtient
√

a2 + b2 ≤ a. Ceci
implique que a2 + b2 ≤ a2 et b2 ≤ 0. Donc b = 0.

b) Soit B = (e1, e2, . . . , en) une base orthonormée de l’espace euclidien Rn pour son produit scalaire usuel. On note,
pour tous entiers p et q tels que 1 ≤ p < q ≤ n, Πp,q = Vect(ep, eq).
On considère up,q l’endomorphisme de Rn tel que : (up,q)|Πp,q

= rα et (up,q)|(Πp,q)⊥ = id(Πp,q)⊥ .
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i) On a la décomposition
Π1,2

⊥
⊕ (Π1,2)⊥ = Rn

B1,2 = (e1, e2) est une b.o.n de Π1,2 et C1,2 = (e3, e4, . . . , en) est une b.o.n de (Π1,2)⊥.
Par définition de u1,2 on a :

MatB1,2

(
(u1,2)|Π1,2

)
= MatB1,2 (rα) = Rα =

cos (α) − sin (α)
sin (α) cos (α)


et

MatC1,2

(
(u1,2)|(Π1,2)⊥

)
= In−2

Comme Π1,2 et (Πp,q)⊥ sont stable par u1,2, alors

U1,2 = MatB (u1,2) = Diag
[
MatB1,2

(
(u1,2)|Π1,2

)
, MatC1,2

(
(u1,2)|(Π1,2)⊥

)]
= Diag (Rα, In−2)

Ainsi

U1,2 =

 Rα 0
0 In−2

 =



cos (α) − sin (α)
sin (α) cos (α)

0 . . . 0
0 . . . 0

0 0
...

...

0 0

1 . . . 0
...

. . .
...

0 . . . 1


.

On a le produit par blocs

Uᵀ
1,2U1,2 =

 Rα 0
0 In−2

 Rα 0
0 In−2

 =

 RαRᵀ
α 0

0 (In−2)2

 =

 I2 0
0 In−2

 = In

Donc U1,2 est une matrice orthogonale.

ii) On a A = (ai,j)1≤i,j≤n, posons U1,2 = (bi,j)1≤i,j≤n et AU1,2 = (ci,j)1≤i,j≤n.

De la forme de U1,2 on a
b1,1 = cos (α) , b1,2 = − sin (α) , b2,1 = sin (α) , b2,2 = cos (α)
bi,i = 1 si i ∈ J2, nK

bi,j = 0 si non

Comme ci,j =
∑

k

ai,kbk,j alors

Tr(AU1,2) =
n∑

i=1
ci,i =

n∑
i=1

n∑
k=1

ai,kbk,i.

Divisons cette somme suivant i = k et i 6= k

Tr(AU1,2) =
n∑

i=1
ai,ibi,i +

n∑
i=1

n∑
k=1
k 6=i

ai,kbk,i.

La première somme vaut
n∑

i=1
ai,ibi,i = cos (α) a1,1 + cos (α) a2,2 +

n∑
i=3

ai,i

Dans la deuxième somme, on distingue les cas i = 1, 2
n∑

i=1

n∑
k=1
k 6=i

ai,kbk,i =
n∑

k=1
k 6=1

a1,kbk,1 +
n∑

k=1
k 6=2

a2,kbk,2 +
n∑

i=3

n∑
k=1
k 6=i

ai,kbk,i.
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on a
n∑

k=1
k 6=1

a1,kbk,1 = a1,2b2,1 +
n∑

k=3
a1,kbk,1 et

n∑
k=1
k 6=2

a2,kbk,2 = a2,1b1,2 +
n∑

k=3
a2,kbk,2.

comme b2,1 = sin (α), b1,2 = − sin (α) et bk,1 = bk,2 = 0 pour k ∈ J3, nK alors

n∑
k=1
k 6=1

a1,kbk,1 = sin (α) a1,2 et
n∑

k=1
k 6=2

a2,kbk,2 = − sin (α) a2,1.

De même bk,i = 0 pour i ∈ J3, nK et k 6= i donc

n∑
i=3

n∑
k=1
k 6=i

ai,kbk,i = 0

Ce qui donne
n∑

i=1

n∑
k=1
k 6=i

ai,kbk,i = sin (α) a1,2 − sin (α) a2,1.

Ainsi Tr(AU1,2) = (a1,1 + a2,2) cos (α) + (a1,2 − a2,1) sin (α) +
n∑

i=3
ai,i .

On peut écrire aussi Tr(AU1,2) = (a1,1 + a2,2) (cos (α) − 1) + (a1,2 − a2,1) sin (α) + Tr(A) .

iii) On a ∀U Tr(AU) ≤ Tr(A) et U1,2 ∈ O(n) pour tout α dans R, donc Tr(AU1,2) ≤ Tr(A).
Ce qui donne pour tout α dans R

(a1,1 + a2,2) cos (α) + (a1,2 − a2,1) sin (α) ≤ (a1,1 + a2,2)

d’après Q2.a on a a1,2 = a2,1.

iv) Soit p et q tels que 1 ≤ p < q ≤ n, posons Up,q = (bi,j)1≤i,j≤n.
On a

up,q(ep) = cos (α) ep + sin (α) eq,

up,q(eq) = − sin (α) ep + cos (α) eq

up,q(ek) = ek si k /∈ {p, q}

ce qui donne

bp,p = cos (α) , bp,q = − sin (α) , bq,p = sin (α) , bq,q = cos (α) ,

bk,k = 1 si k /∈ {p, q}

bi,j = 0 si i, j /∈ {p, q} et i 6= j
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Ainsi Up,q est de la forme

Up,q =



1 . . . 0
...

. . .
...

0 . . . 1

0 0

0

cos (α) 0 . . . 0 − sin (α)
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
− sin (α) 0 . . . 0 cos (α)

0

0 0
1 . . . 0
...

. . .
...

0 . . . 1


v) Par un raisonnement similaire à 2.b)ii), on trouve

Tr(AUp,q) =
n∑

k=1
k /∈{p,q}

ak,k + (ap,p + aq,q) cos (α) + (ap,q − aq,p) sin (α) .

vi) L’hypothèse Tr(AUp,q) ≤ Tr(A) donne :

(ap,p + aq,q) cos (α) + (ap,q − aq,p) sin (α) ≤ ap,p + aq,q

Comme en Q2.b)iii), cette inégalité, valable pour tout α, donc ap,q − aq,p = 0, soit ap,q = aq,p. Ceci est vrai pour
tous p < q donc vrai pour tout p, q. Ainsi, A est une matrice symétrique.

c)i) A est une matrice symétrique réelle. L’endomorphisme g canoniquement associé à A (dans la base canonique de
Rn, supposée orthonormée) est donc un endomorphisme symétrique (ou auto-adjoint).
Le théorème spectral affirme que g est diagonalisable dans une base orthonormée de vecteurs propres.
Soit V = (v1, . . . , vn) une telle base, et γi les valeurs propres associées : g(vi) = γivi.

ii) Soit j ∈ J1, nK. On considère l’endomorphisme wj de Rn défini par

wj(vk) =

 −vj si k = j

vk si k ∈ J1, nK et k 6= j

• La matrice de wj dans la base V est

∆j = Diag(1, . . . , −1, . . . , 1)

donc wj est une réflexion (la symétrie orthogonale par rapport à l’hyperplan orthogonal à vj).
Donc la matrice Wj de wj relativement à la base B est Wj = P∆jP −1 où P est la matrice de passage de B
à V ( qui sont deux bases orthonormées) donc P est une matrice orthogonale et P −1 = P ᵀ.

Ainsi
Wj = P∆jP ᵀ = PDiag(1, . . . , −1, . . . , 1)P ᵀ

Wj est donc une matrice orthogonale.

• La matrice de g dans la base V est DA = Diag(γ1, . . . , γn). Donc A = PDAP ᵀ et AWj = P (DA∆j) P ᵀ, avec

DA∆j = Diag(γ1, . . . , γj−1, −γj , γj+1, . . . , γn).
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Ce qui donne

Tr(AWj) = Tr(DA∆j) = −γj +
n∑

k=1
k 6=j

γk

et on a Tr(DA∆j) =
∑

k 6=j γk − γj .

Tr(A) = Tr(DA) =
n∑

k=1
γk = γj +

n∑
k=1
k 6=j

γk.

On en déduit Tr(AWj) = Tr(A) − 2γj .

• On a Wj ∈ On(R), l’hypothèse Tr(AWj) ≤ Tr(A) donne Tr(A)−2γj ≤ Tr(A), donc −2γj ≤ 0,ce qui implique
γj ≥ 0.

d) On sait qu’une matrice symétrique réelle est positive (c’est-à-dire dans S+
n (R)) si et seulement si toutes ses valeurs

propres sont positives ou nulles.

Nous avons montré que A est symétrique (d’après Q2.b)vi)) et toutes ses valeurs propres sont positives ou nulles
(d’après Q2.c)ii)), donc.

Ainsi on a montré que : A ∈ S+
n (R) si et seulement si ∀U ∈ O(n) Tr(AU) ≤ Tr(A) .

FIN

14


