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EXERCICE
(Noté 4 points sur 20)

1 -1 1 1 00
On considére les matrices : A = [ -1 1 1] etIs= |0 1 0]. Soient u et v deux vecteurs de R3, on pose
-1 -1 3 0 0 1

Vect(u, v) le sous-espace vectoriel de R? engendré par u et v.
1. Ompose fi=(1,1,1) et F={(z,y,2) eR¥ |z +y—2=0}.
a) Déterminer deux vecteurs fy et f3 de R? tels que F' = Vect(fa, f3), avec fo = (a,0,b) et f3 = (0,¢,d), ot a,b, ¢
et d sont a déterminer.

b) Montrer que la famille (fi, f2, f3) est une base de R3.

0 00
2.a) Vérifier que A2 — 34+ 2I3 =03, avec O3 = |0 0 0| la matrice nulle.
0 0 0
b) En déduire que A est inversible et déterminer son inverse A1
1 1 a a 0 0
3.a) Déterminer les deux réels aet ftelsque: A1 ]| =a|1],Al0]| =8[0]etA|lc|=8]|c]|,ouabc
1 1 b b d d

et d sont les réels trouvés dans la question 1. a).
b) Montrer qu’il existe une matrice diagonale D et une matrice P inversible, qui sont & déterminer, telles que
A= PDP™ L.

c) Montrer, par récurrence sur n, que pour tout entier naturel n, A" = PD"P~!.



https://tinyurl.com/4up84xze

PROBLEME

On désigne par n un entier naturel non nul et K =R ou C.

On note M,,(K) I'espace vectoriel des matrices carrées d’ordre n & coefficients dans K, I,, la matrice unité de M,, (K)
et M, 1(K) désigne I’espace vectoriel réel des matrices colonnes a n lignes.

Pour une matrice M de M,,(K), on désigne par xa(X) = det(XI,, — M) le polynéme caractéristique de M.

On note MT la matrice transposée de la matrice M et Tr(M) la trace de la matrice carrée M.
n

On rappelle que pour toute matrice M = (m; j)1<i j<n € Mp(K), Tr(M) = > my;.
i=1

On note Diag(ay,...,a,) la matrice diagonale de M,,(K) qui admet pour coefficients diagonaux les réels ay, ..., a,
dans cet ordre. On désigne par S, (R) ensemble des matrices symétriques de M, (R), c’est-a-dire VS € S,,(R), ST = S.
On note S;F (R) 'ensemble des matrices S de S,,(R) telles que, VX € M,, 1 (R), XTSX > 0.

R+ désigne I’ensemble des réels positifs et R*T désigne 1’ensemble des réels strictement positifs.

Le probleme traite des propriétés et des applications qui sont autour de la notion de trace.

PARTIE 1

Préliminaires

1. Montrer que l'application Tr : M, (R) — R, M > Tr(M), est linéaire.

2.  Solent M = (m; j)i<ij<n €t N = (n; j)1<i j<n deux matrices de M, (R).

a) Montrer que Tr(MN) = Z Zml,k N 1
1=1 k=1
b) Montrer que Tr(MN) = Tr(NM).

¢) Montrer que si M et N sont semblables dans M,,(R) alors Tr(M) = Tr(N).
3. On considére ensemble F = {M € M,,(R) | M est diagonale et Tr(M) = 0}.

a) Montrer que F' est un sous-espace vectoriel de M, (R).
b) Déterminer la dimension de F.

c) En déduire que, pour toute matrice inversible P de M, (R), la dimension du R-espace vectoriel G = PFP~1 =
{MeM,(R)|M=PDP et DeF}.

4. Soit A une matrice de M,,(R). On considére I’application,
Dp: My(R) > M,u(R) ;3 X X+Tr(X).A

a) Vérifier que ®4 est une application linéaire.

Soit B une matrice de M,,(R). On considére I’équation matricielle :
() Pa(X)=B

b) On suppose dans cette question que Tr(A4) # —1.

i) On suppose que M est une solution de 1’équation matricielle (x). Déterminer Tr(M) en fonction de Tr(A) et
de Tr(B).
ii) Résoudre dans M, (R) I’équation matricielle (x).

iii) En déduire que ®4 est un automorphisme d’espaces vectoriels.

¢) On suppose maintenant que Tr(4) = —1.



i) Résoudre dans M,,(R), selon les valeurs de Tr(B), I’équation matricielle (x).

ii) Montrer que ®4 est un projecteur sur un sous-espace vectoriel F; de M,,(R) parallélement & un sous-espace
vectoriel Fy de M,,(R), déterminer F; et Fb.

PARTIE 2

La valeur absolue de la trace comme étant une "fonction génératrice"

Dans cette partie, on note & = M,,(KK). On rappelle que £ est un K-espace vectoriel de dimension n? et que sa base
canonique est (E; j)1<i j<n, OU pour tous entiers i et j tels que 1 < i,j < n, E; ; désigne la matrice de £ dont tous
les coefficients sont nuls sauf celui de la i*™¢ ligne et la j°™° colonne qui est égal & 1. Pour tous entiers h et k tels que
1 sih=k
0 sih#k
On rappelle que pour tous entiers naturels 4, j, k, tels que 1 < 4,4,k,0 < n, E; jE,; = 6;1E;,;. Une application ¢ de

1 < h,k <n, on désigne par J,, ; le symbole de Kronecker qui est défini par d5, 1, =

& sur RT est dite semi-norme sur &, si elle vérifie :

o VM € E, VA e K,q(AM) = |\|qg(M).

o« Y(M,N) €& q(M+ N)<q(M)+q(N).

On dit qu'une semi-norme g sur £ vérifie la propriété (P) si V(M,N) € £2,q(MN) = q(NM).

1. Soit ¢ une semi-norme sur £.
a) Montrer que ¢(0O,) =0, ot O,, est la matrice nulle de &, et que pour tout M de &, q(—M) = q(M).
b) Montrer que pour tout (M, N) de £2, |¢(M) — q(N)| < q(M + N).
c) Montrer que pour tout (M, N) de 2, si ¢(N) = 0 alors ¢(M + N) = q(M).

2.  On considére I'application f définie de £ dans RT par f(M) = |Tr(M)|. Montrer que f est une semi-norme sur
& qui vérifie la propriété (P).

Dans les questions 3. et 4. de cette partie, on suppose que n > 2.

3. Soit (aq,...,q,) une famille d’éléments de K et soient A et B deux matrices de £ telles que,

A= Z El,j + ZEl’Z et B= Z ahEh,l
j=1 i=2 h=1

a) Montrer que AB = Zaj Eiq+ ZO@EM.

J=1 i=2
n n
b) Montrer que BA = Z ap, ZE’LJ
h=1 j=1
4. Soit g une semi-norme sur £ qui vérifie la propriété (P).
Soit M = (m; j)1<i,j<n un élément de €.
a) Montrer que pour tous entiers distincts i et j tels que 1 < 4,5 < n, ¢(E; ;) = 0, (on pourra utiliser le fait que

Ei,j = Ei,iEi,j)'

(2

b) En déduire que ¢ ( mi,lEm) =0.
—2

n
c) Vérifier que ¢(M) = ¢ (Z mLzE”>
i=1
d) Montrer, en prenant des valeurs précises pour (ay)i1<kp<n qui définissent la matrice B, que (M) = q(BA).

e) Montrer qu'il existe un réel positif a tel que ¢ = af.

5. Dans le cas ou n = 1, le résultat démontré ci-dessus reste-t-il valable 7 justifier votre réponse.



PARTIE 3

Caractérisation d’une matrice de S;'(R) par la notion de trace

O(n) désigne le groupe des matrices orthogonales de M,,(R), c’est-a-dire des matrices M de M,,(R) vérifiant MTM =
L.

1.  On considére une matrice S de S;F(R).

a) Soit la matrice D = Diag(A1, A2, ..., An) telle que pour tout entier k, 1 < k < n, A\; sont des réels positifs. Soit
U = (uk,j)1<k,j<n une matrice de O(n).

i) Montrer que pour tous entiers k et ¢, 1 < k,i <n, |ug,| < 1.
ii) Vérifier que DU = (Agug, ;) 1<k, j<n-
iii) En déduire que Tr(DU) < Tr(D).

b) Soit U une matrice de O(n).

i) Montrer qu’il existe une matrice P de O(n) et une matrice D = Diag(ay,...,ay,), avec pour tout entier ¢,
1 <4 < n, a; sont des réels positifs et S = P.D.tP.
ii) Montrer, en posant V = PTUP, que SU = P(DV)PT.
iii) En déduire que Tr(SU) < Tr(S).

2. Réciproquement, soit A = (a; ;)1<i j<n une matrice de M, (R) telle que,
YU € O(n) Tr(AU) < Tr(A)

a)i) Montrer que, pour tous réels a,b, o, il existe un réel ¢ tel que, acos o + bsin o = v/a2 + b2 sin(a + ¢).
ii) En déduire que, si pour tout réel o, acosa + bsina < a alors b = 0.

b) Soit B = (e1,ea,...,e,) une base orthonormée de I’espace euclidien R™ pour son produit scalaire usuel. On
note, pour tous entiers p et ¢ tels que 1 < p < ¢ < n, II, , le plan engendré par la famille (e,, e;). On consideére
Up,q ’endomorphisme de R™ tel que la restriction de u, , sur II, ; est la rotation du plan II, , d’angle « et la
restriction de u, 4 sur 'orthogonal de II,, , est 'application identité de I’'orthogonal de II, 4.

i) Ecrire la matrice Ui 2 de uy 2 relativement a la base B et montrer que Uy 2 est une matrice orthogonale de
M, (R).
ii) Calculer Tr(AU; 2) en fonction de ay 2, az1, (4:)1<i<n €t de a.
iii) En déduire que a12 = az21.
iv) Ecrire, dans le cas général, la matrice U, , de u, , relativement a la base B.
v) Calculer, dans le cas général, Tr(AU, ,) en fonction de ay 4, Gq,p, (ai)1<i<n €t de a.

vi) En déduire que A est une matrice symétrique.

c)i) Justifier qu’il existe une base orthonormée V = (v1,va,...,v,) de R™ formée de vecteurs propres de 1’endo-
morphisme g canoniquement associée a la matrice A.
Pour tout entier i tel que 1 < i < n, on note ; la valeur propre de g associée au vecteur propre v;.

ii) Soit j un entier tel que 1 < j < n. On considére 'endomorphisme w; de R™ défini par w;(v;) = —v; et pour

tout entier k tel que 1 <k <mn et k # 7, wj(vk) = V.
Soit W; la matrice de ’endomorphisme w; relativement a la base B.
Vérifier que W; est une matrice orthogonale de M, (R) et déterminer Tr(AW}) en fonction de Tr(A) et de
;- En déduire que v; > 0.

d) En déduire que 4 € S;F(R).

FIN DE L’EPREUVE
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EXERCICE

On pose fi = (1,1,1) et F = {(2,y,2) ER3 |z +y — z=0}.
a) Soit f = (z,y,2) € F, donc z = x + y, ce qui donne
f= @y, r+y)=2(1,0,1) +y(0,1,1)

Soit fo = (1,0,1) et f3 =(0,1,1). La famille (fa, f3) est génératrice de F, ainsi, F' = Vect(fa, f3).
b) Nous avons f; = (1,1,1), fo = (1,0,1) et f3 = (0,1,1).

Le déterminant de la famille (f1, f2, f3) dans la base canonique de R? est égal a

PR ] ks

10 1= ~ =(-1)—-(1-1)=-1
11 |11

111

Donc la famille (f1, fa, f3) est libre, de cardinal 3, donc c’est une base de R®.

2.a) On vérifie que :

1 -1 1 1 -1 1 1 -3 3
A=-1 1 1|1 1 1|]=]-3 1 3
-1 -1 3 -1 -1 3 -3 -3 7
et
1 -3 3 3 -3 3 2 00 0 0 O
A*—3A+23=|-3 1 3|-|-3 3 3[+]|0 2 o|l=|0 0 0
-3 -3 7 -3 -3 9 0 0 2 0 0 O
Ainsi| A2 — 34 + 2I; = Os |
b) Ona A? — 3A + 2I3 = Og, on peut écrire 34 — A% = 213, donc A (5(3I3 — 4)) =15.
21 -1
Ainsi A est inversible et son inverse est | A~1 = %(313 —A)= % 1 2 -1
1 1 0
1. Tous mes corrigés sont disponibles ici lhttps://tinyurl . con/4up8ixze 26-05-2025


https://tinyurl.com/4up84xze

3.a)

b)

On prend ici f1 = (1,1,1)7, fo = (1,0,1)7 et f3 = (0,1,1)T. On vérifie facilement que Af; = f1, Afa = 2fs et
Afs =2f3. Donca=1, g =2.

D’apres les questions Q1.b et Q3.a, (f1, fa, f3) est une base de R?, formée de vecteurs propres de A.
10

1
Donc la matrice A est diagonalisable, et on a A = PDP~Yavec: P= |1 0 1| (La matrice de passage de la
1 1 1
1 00 1 1 -1
base canonique vers la base (f1, fa,f3) ),et D=0 2 0. OnaaussiP™! = 0 -1 1
0 0 2 -1 0 1

Se fait simplement par récurrence sur n.
Pour n =0, A = PD°P~1 =1I;.

Supposons le pour un entier n > 0, donc
A"l = A"A = (PD"P~YY(PDP™') = PD"(P~'P)DP~ ' = PD"I3DP~! = pD" "1 p~!

donc c’est vraie pour n + 1.
Conclusion : A" = PD"P~! pour tout entier naturel n.

Dans notre cas

110 1 0 0 1 1 -1 1 1—927 9271
A"=11 0 1 0 2 0 0 -1 1 |=1]1-2 1 m 1
1 1 1 0o 2 -1 0 1 1—27 1—2n 2ontl_q



PROBLEME
PARTIE 1

Préliminaires

1. Soient M = (mid‘)lg@jgn, N = (ni7j)1§i7j§n deux matrices de Mn(R) et A € R.
M + AN est la matrice de terme général (m; ; + An; ;). On a

n

Tr(M + /\N) = Z(ml,z + )\nm‘) = i mi + A zn: Ny
=1 =1

i=1

Donc, ‘Tr(M + AN) = Tr(M) + ATr(N) ‘ L’application Tr est linéaire.

2. Soient M = (mi7j)1§i7j§n et N = (ni7j)1§i7j§n deux matrices de Mn(R)

a) Soit P = MN = (pij)i<ij<n- Ona

Donc,

b) Soit Q@ = NM = (¢;,j)1<i,j<n, On &

3

qi,j = N my ;.
1=1
n n
D’aprés Q2.a), Tr(MN) = szl’knk’l'
1=1 k=1
On permute les deux sommes
n n n n n
Tr(MN) = Z Zml,knk,l = Z Zml,knk,l = ZQk,k = Tr(NM)
1=1 k=1 k=11=1 k=1

Ainsi, | Te(MN) = Te(NM) |
c) Si M et N sont semblables, il existe une matrice inversible P € M,,(R) telle que N = PMP~!. Alors

Tr(N) =Te(P (MP')) =Te((MP™') P) = Te(M (P~'P)) = Tr(M)
Donc, les matrices semblables ont la méme trace.
3. On considére Pensemble F = {M € M, (R) | M est diagonale et Tr(M) = 0}.
a) Montrons que F' est un sous-espace vectoriel de M, (R).

o La matrice nulle O,, est diagonale et Tr(O,,) = 0, donc O,, € F. F n’est pas vide.

o Soient M, My € F et A € R. M; et M, sont diagonales, donc My + AMs est une matrice diagonale. Tr(M;) =0
et Tr(Mz) = 0. Par linéarité de la trace, Tr(My + AMz) = Tr(My) + ATr(Ms) = 0. Donc My + MM, € F.

Ainsi F est un sous-espace vectoriel de M,,(R).
Autre méthode : On a F' = D, (R) NKer (Tr), avec D, (R) le sous-espace vectoriel de M,,(R) formé des matrices
diagonales.

Donc F est un sous-espace vectoriel de M,,(R)



b)

On a

M € F & M =Diag(ay,....,an) et a; +...+a, =0

& M= Diag(al, e (e an,l))
n—1

s M= Z a; (Ei,i — En,n)
=1

La famille (E“ - En7”)1<¢<n—1es‘5 génératrice de F et ‘ dim(F)=n-1 ‘

Autre méthode : L’application Tr|p, @) : Dn(R) — R est une forme linéaire non nulle. Son image est donc R, de
dimension 1. F' = Ker(Tr|p, ). D’apres le théoréme du rang, dim(F') =dim(D,,(R))—dim(Im(Tr|p, r))) = n—1.
Soit P une matrice inversible de M, (R) et G = PFP™!' = {M € M,(R) | M = PDP~! et D € F}.
Considérons Papplication pp : M, (R) — M,,(R) définie par pp(X) = PXP~!.

©p est un isomorphisme de I'espace vectoriel M, (R) ((¢p) ' = ¢p-1), donc elle conserve la dimension des sous-
espaces.

Comme G = ¢p(F), alors dim(G) =dim(F) =n — 1.

Ainsi ‘ dim(G)=n—1 ‘

4. Soit A une matrice de M,,(R). On considére I’application,

a)

b)

i)

Dy Mu(R) =5 Mu(R) ;3 X—X+Tr(X).A
Soient X, Xo € M, (R) et X € R.

DXy +AX2) = (X1 +AXy) 4+ Tr(X; +AX5)A
= X) 4 AXy + (Tr(X)) + ATr(X3)) A
= (X1 + Tr(X1)A) + A(X + Tr(X,)A)
= BA(X)) + ADA(XY).

Donc ® 4 est linéaire.

Soit B une matrice de M,,(R). On considére 1’équation matricielle :
(x) ®a(X)=B

On suppose dans cette question que Tr(A) # —1.

Si M est solution de (x) alors, M + Tr(M)A = B. Appliquons la trace aux deux membres :
Tr(M 4+ Tr(M)A) = Tr(M) + Tr(Tr(M)A) = Te(M)(1 + Tr(A)) = Tr(B)
) _ Tx(B)
Puisque Tr(A4) # —1, 1 + Tr(A) # 0 alors | Tr(M) = T4 |

Si M est solution de (x) alors, M = B — Tr(M)A.
Tr(B
En substituant la valeur de Tr(M) trouvée précédemment : M = B — # .
1+ Tr(A)

Réciproquement, vérifions si cette expression de M est bien solution.

. Tr(B)

t My =B — —————A.
Soi 0 T4 Tr(A) On a

Tr(B) Tr(B) Tr(B)
Tr(My)=Tr ([ B— —————A ) =Tr(B) — ———+—Tr(4) =
r(Mo) r( 1+ Tr(A) > MB) = () W = Ty

Donc

O 4(Mo) = Mo + Tr(Mp) A (B Tr(B)A) ) B

14 Tr(A)

4



Tr(B)
1+ Tr(A)

iii) ®4 est un endomorphisme de M, (R).

Ainsi | M = B — A | est 'unique solution de I’équation (x).

Pour toute matrice B € M, (R), 'équation ®4(X) = B admet une solution unique. Ceci signifie que @4 est

bijective. Donc ® 4 est un automorphisme de M,,(R).
¢) On suppose maintenant que Tr(A4) = —1.

i) Dans I'équation X + Tr(X)A = B, on compose avec la trace :
Tr(B) = Tr(X) + Tr(X)Tr(A) = Tr(X) — Tr(X) =0

Cas 1 : Si Tr(B) # 0. L’équation (*) n’a aucune solution.
Cas 2 : Si Tr(B) = 0. La condition nécessaire est satisfaite.
On remarque que B est solution particuliere de (x).

Soit X une autre solution de (x), posons Y = X — B sont solutions de (x), alors
B=X+Tr(X)A=Y+B+Tr(Y +B)A=Y +B+Tr(YV)A
par suite
Y+Tr(Y)A=0

Autrement dit Y est colinéaire avec A et X = B — Tr(Y)A.
Réciproquement, soit ¢ € R. Posons X = B — tA.

Alors Tr(X) = Tr(B) — tTr(A) =t et X + Tr(X)A = X + tA = B. Par suite X est une solution de (x).
Ainsi, si Tr(B) = 0, Uensemble des solutions de (%) est | { B —tA |t € R} |

ii) Montrons que ® gest une projection.

o Vérifions que P4 0Py = P 4.

On a
DU(PA(X)) =Pa(X +Tr(X)A) = (X +Tr(X)A) + Tr(X + Tr(X)A)A
et
Tr(X 4+ Tr(X)A) = Tr(X) 4+ Tr(X)Tr(A) = Tr(X) — Tr(X) =0
donc

Pa (Pa(X)) = a(X).

® 4 est bien un projecteur.

o &4 est une projection sur Fy = Im(® 4) parallelemnt & Fy = Ker(®4).
Soit Y € Im(®4). Alors Y = @ 4(X) pour un certain X. On a

Tr(Y) = Tr(®4(X)) = Tr (X + Tr(X)A) = Tr (X) + Tr(X)Tr(A) = 0.

Donc Im(® 4) C Ker(Tr).

Réciproquement, si Y € Ker(Tr), alors ®4(Y) =Y + Tr(Y)A =Y. Donc Y € Im(®D4).
Ainsi, | Fi = Im(®,4) = Ker(Tr) = {M € M, (R) | Tr(M) = 0} |

On a Fy = Ker(®4), c’est Pensemble des solutions de (x) avec B = O,,.

D’apreés i) on a Ker(®4) = {—tA |t € R}.

Ainsi ‘ Fy, = Ker(®4) = Vect(A) ‘




1.

a)

b)

PARTIE 2

La valeur absolue de la trace comme étant une "fonction génératrice"

Soit ¢ une semi-norme sur £.

On a
q(0,) = ¢(0.0,,) = [0[¢(0,) = 0,

et
q(=M) = q((=1)M) = | = 1[q(M) = q(M).

Soit (M, N) de £2, on a par I'inégalité triangulaire :
q(M) =q(M +N - N) < q(M+ N)+q(—N).
Comme ¢(—N) = gq(N), on a q(M) < q(M + N) + q(N), d’on
q(M) = q(N) < q¢(M + N). (1)

De méme on a
q(N) —q(M) < q(M + N).(2)

Les inégalités (1) et (2) impliquent ‘ l[g(M) — q(N)| < q(M + N) ‘
Soit (M, N) de £2, supposons que ¢(N) = 0.

L’inégalité triangulaire donne :

¢(M + N) < q(M) + q(N) = q(M).

D’apres b)

Ces deux inégalités entrainent ‘q(M +N)=q(M) ‘

On considere I'application f définie de £ dans R™ par f(M) = |Tr(M)|. Montrons que f est une semi-norme sur £
qui vérifie la propriété (P).
e Ona
o SOAM) = [Tr(AM)] = [ATr(M)] = [N Te(M)] = |ALf(M).
o f(M+N)=|Tr(M+N)| =|Tr(M)+Tr(N)|. Par 'inégalité triangulaire : | Tr(M )+ Tr(N)| < |Tr(M)|+|Tr(N)].
Donc f(M + N) < f(M) + f(N).
f est donc une semi-norme.
Soit (M, N) de €2, on a
FIMN) = [Te(MN)| = [Te(NM)| = f(NM)
Donc f vérifie (P).

On suppose que n > 2.



3. Soit (aq,...,q,) une famille d’éléments de K et soient A et B deux matrices de & telles que,

1 1 1 1
0 1 0 0
A= ZEl,j +ZEH =
j=1 i=2
1 0
0 0 1
et
a, 0 - 0
B:iahEhJ: as 0 -+ 0
h=1
a, 0 - 0
a) Ona
AB = ZEl j + Z Ez K ( Z ahEhJ)
7 =2 h=1
n
= Z ZahElgEh1+ Z ZahEzthl
j=1 h=1 i =2 h=1
n n n n
= Z Zahd",hEl,l + Z Zahdi Ny
j=1 h=1 i =2 h=1
= Za_]El 1+ Z o; B ,1

1 =2

<.
Il
—

Donc | AB = Zozj Ery +2n:06iEi,l .
i=2

j=1
b) Ona
BA — ( ZahEm> ZEM f YR,
h=1 1 =2
= ) anbpi by ; Z Z anbpi b
h=1 j=1 h=1 =2
= > D oniiEn;+ Z Z andi; Epi
h=1 j=1 h=1 ¢ =2
la deuxiéme somme est nulle car §; ; = 0 pour tout ¢ > 2, donc BA = Z Z apEn ;.
h=1 j=1

Ainsi | BA = i ap iEh’j
h=1 j=1

4. Soit ¢ une semi-norme sur £ qui vérifie la propriété (P).

Soit M = (m; j)1<i,j<n un élément de €.

a) Soit deux entiers distincts ¢ et j tels que 1 <1i,j < mn.

On a Ei,j = Ei,iEi,j- Par la pI‘OpI‘iété (P),

Q(E”E”) = CI(E”E“) =q (5“Em) = 05,:9 (E”) .



b)

d)

Comme i # j, alors 0;; =0, donc ¢(E; ;E; ;) = 0.
Ainsi, ‘q(E”) =0 pour i # j ‘

Par 'inégalité triangulaire :

=2

(ZmzlEzl> < g(mi1Eiq) Z\mz 11¢(Ei 1)

Pour i € {2,...,n}, i # 1, donc ¢(E; 1) = 0.
Alors

q (i mi,lEi,1> <0

=2

=2

n
Comme q est & valeurs dans R™, on conclut que | ¢ (Z mi,lEi,l) =0/

On écrit

E m; ;B E m“E”—i—E m; ;B j.

1<i,j<n

Posons Dy = Zm” E;;et N = Zm” i,

i#]
On a

i#]

N)=gq Zmi,jEi,j < Z Imi,jlq(E

i#j i#]

D’apres Q4.a), ¢(E; j) = 0 pour i # j, donc ¢ (N) < 0,ce qui implique ¢ (N) = 0.

D’aprés Ql.c), si ¢(N) =0, alors ¢(M) = q(Dy + N) = g(D). Donc

D’aprés Q4.C), q(M) - Q(DJVI ol DM Zmz g4

a(M) = 4(Dar) = q (z mE) |

De méme, q(BA) = g(Dpa) ot Dpy est la partle diagonale de BA. D’apres Q3.b),

BA = Zah ZEh’J = ZZO"LE’W'

h=1 h=1j=

La partie diagonale de BA est
Dpa = Z apEp p.
h=1

Choisissons ay = my, pour k =1,...,n. Ce qui donne

1

Dpa = th,hEh,h =Dy.

h=1

Alors ¢(Dpa) = q(Dar). Donc

q(BA) = q¢(Dpa) = q(Dyr) = q(M)

Ainsi ‘ q(M) = q(BA) avec a, =my, pour k=1,....n ‘

Utilisons les matrices A et B de la question Q3, avec le choix aj = my k.

D’apres Q3.a),

ij,j Eiq+ Zmi,iEi,l =Tr(M)E1 1 + Zmi,iEi,l-
Jj=1 i=2

=2




1=2

D’apres Q4.b) ¢ (Z mi,iEu) = 0. D’apres Ql.c), on a

q(AB) = q(Tr(M)E1 1 + Zmi,iEi,l) = q(Tr(M)E 1) = |Te(M)|q(Er,1)

=2

Donc ‘ g=oaf aveca = q(E11) >0 ‘

5. Sin=1, &= M;(K). Une matrice M € M;(K) est de la forme M = (mq,1) = m11E1 1 avec Tr(M) = mq;.
Done f(M) = [Te(M)] = [,
Soit ¢ une semi-norme sur M;(K), alors (M) = g(m11E11) = |m11]q(E11). Soit
On a q(M) = af(M), aveca = q(E11). Le résultat ¢ = af reste donc valable pour n = 1.

PARTIE 3

Caractérisation d’une matrice de S (R) par la notion de trace

O(n) désigne le groupe des matrices orthogonales de M,,(R), c’est-a-dire des matrices M de M, (R) vérifiant MTM = 1I,,.
1.  On consideére une matrice S de S;F (R).

a) Soit la matrice D = Diag(A1, Aa, ..., \n) telle que pour tout entier k, 1 < k < n, Ay sont des réels positifs. Soit

U = (u;,5)1<i,j<n une matrice de O(n).

i) On a U € O(n), donc les colonnes, C4,...,C,, de U, forment une base orthonormée de R™ pour le produit
scalaire usuel.

Pour j € [I,n] ona Cj = (uyj,...,un,;)T. On a donc pour i € [1,n]

lui j| < |Cjll2 =

n

2 _
E uj ;= 1
i=1

Donc‘ lui ;| <1, pour tout 4,5 € [1,n] ‘

ii) Ona U = (uij)i<ij<n €t D = (Nidij)1<ij<n-

Posons DU = (¢;,5)1<i,j<n. Alors pour 4, j € [1,n]

n
Cij = g Aili KUk, = Ay 5.

k=1

Donc ‘ DU = (Aiui7j)1§i7j§n ‘

iii) On a

TI‘(DU) = Z Ck,k = Z /\kuhk.
k=1 k=1

Puisque A > 0 et upp < |ugx] < 1, alors

Tr(DU) = Z Mot < Z A\ = Tr(D).
k=1 k=1

Donc | Tr(DU) < Tr(D) |

b) Soit U une matrice de O(n).



i) S € S,(R). D’apres le théoreme spectral, S est diagonalisable dans une base orthonormée de vecteurs propres.
Il existe donc une matrice orthogonale P € O(n) (P~! = PT ) et une matrice diagonale D = Diag(as,. .., a,)
(dont les coefficients diagonaux a; sont les valeurs propres de S) telles que S = PDP~! = PDPT.

De plus, S € S§;7(R), ce qui est équivalent & Sp (S) C R ,donc les valeurs propres «; sont positives.
( Si V; est un vecteur propre associé a o, alors VISV, = V. (Vi) = a; VTV, = o, || Vi]|? > 0)

iif) Posons V= PTUP,ona S = PDPT. Donc

SU = (PDPT)U = PD(PTUP)PT = PDVPT.

Ainsi, | SU = P(DV)PT |
iii) On a SU = P(DV)PT. Donc SU est semblable & DV et

Tr(SU) = Te(DV)
Comme O(n) est un groupe et P,U € O(n), alors
V =PTUP =P 'UP € O(n)

de plus D = Diag(ay, ..., ay) avec «; > 0.
D’apres la question Ql.a)iii), Tr(DV) < Tr(D).
Donc

Tr(SU) = Tr(DV) < Tr(D) = Tr(S)

Ainsi | Tr(SU) < Te(S) |

2. Soit A = (a;;)1<i,j<n une matrice de M, (R) telle que,
VU € O(n) Tr(AU) < Tr(A)
a)i) Soit a,b, o, des réels

e Si(a,b) = (0,0), le résultat est trivial.

o Si (a,b) # (0,0), alors va? + b2 # 0. On peut écrire :

acos (a) 4+ bsin (o) = Va2 + b2 <

cos ()

a b
_— + ——sin .
7 W i (a))

Soit xg = .Onazd+y2=1

b a
va? + b2 Yo va? + b2

Donc il existe un angle ¢ tel que xg = cosy et yo = sin .
L’expression devient v/a? 4 b2 (sin ¢ cos () + cos psin (a)) = va? + b? sin(a + ¢).
Ainsi, il existe ¢ tel que | acos () + bsin (o) = Va2 + b2 sin(a + ¢) |.

ii) Si pour tout réel «, acos (a) + bsin () < a.
Alors \/msin(a + ¢) < a pour tout «. En particulier, pour o = g — ¢, on obtient Va2 + b2 < a. Ceci
implique que a? + b% < a? et b*> < 0. Donc b = 0.
b) Soit B = (e1,es,...,e,) une base orthonormée de I'espace euclidien R™ pour son produit scalaire usuel. On note,
pour tous entiers p et ¢ tels que 1 < p < g < n, II, = Vect(ep, eq).

On consideére up 4 'endomorphisme de R™ tel que : (up’q)mp , = Ta €t (upvq)\(np O+ = idg, )
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On a la décomposition
IT, » ETB (1_11,2)l =R"
B12 = (e1,e2) est une b.o.n de II; 2 et C1 2 = (e3,€4,...,e,) est une b.o.n de (Hl’g)J‘
Par définition de u; 2 on a :
Matg, , ((um)m1 2) = Matg, , (ra) = Ry = C?S (o) —sin(a)

’ sin (o)  cos ()
et

Mate, , ((ULQ)‘(HLZ)J_) =1,_2

Comme II; 5 et (Hp,q)L sont stable par u, o, alors

U172 = Matg (ul,g) = Diag [Z\lCLTfl’j’L2 ((ULQ)‘HL?) ,]\4&1ch2 ((ULQ)\(HLQ)L)} = Diag (Ra,I”_g)

Ainsi

cos (o) —sin(«) 0 ... 0
sin (o)  cos (a) 0 ... 0
Urs - 0 0 1 0
0 0 0 1

On a le produit par blocs

] R.| 0 R.| 0 R.RI| 0 L| o
U1,2U1’2 = = 3 = = In
0 |Tos 0 |Tus 0 | (o) 0L

Donc Uj 5 est une matrice orthogonale.

On a A = (aij)i<ij<n, Posons Uiz = (bij)i<ij<n €t AUz = (¢ij)1<ij<n-

De la forme de U; 2 on a

b171 = COS (Oé) y b172 = —sin (a) s bg,l = sin (Oé) N b272 = COS (Oé)
bi,i =1sii€ [[Q,TL]]

b; ; = 0 si non

Comme ¢; ; = E a; by, ; alors
k

Tr(AUL2) = ZCH =33 airbr-

i=1 k=1

Divisons cette somme suivant i = k et i #£ k

AU12 Zall zz+zzazkbkz~

1=1 k=1
k#1

La premiere somme vaut
n
E a; ib;; = cos (a) a1,1 + cos (@) ag,2 + E ;i
i=1

Dans la deuxieme somme, on distingue les cas ¢ = 1,2

n n n n n n
Z Z a;kbr; = Z a1, kby1 + Z a2 b2 + Z Z @i 1y i
Zi

i=1 k=1 k=1 k=1 i=3 k=1
k#1 k#£2 ki

11



iii)

on a

n n n n
E a1,kbig,1 = a1,2b21 + E a1,,bi,1 et E a2,kbr2 = az1b1,2 + E a2 kb 2.

k=1 k=3 k=1 k=3
k21 k£2
comme by 1 = sin (@), by 2 = —sin («) et b1 = b2 = 0 pour k € [3,n] alors

n n
Z a1,,bi,1 = sin (o) aq 2 et Z ag,,bg2 = —sin (a) ag 1.
k=1 k=1
kA1 kA2
De méme by, ; = 0 pour i € [3,n] et k # i donc
n

=3

ai xbr,; =0

NE

EENE

=

o

Ce qui donne

a; kbk,; = sin (a) a1,2 — sin (a) ag 1.

M=

33

i=1

ko
R

1
i

Ainsi TI‘(AULQ) = (a171 =+ a272) COS (Oé) + (G,LQ — CLQ 1 SlIl + Zm il

On peut écrire aussi ‘ Tr(AU12) = (a11 + az,2) (cos () — 1) + (a1,2 — az,1) sin (o) + Tr(A) ‘

On aVU Tr(AU) < Tr(A) et Uy 2 € O(n) pour tout a dans R, donc Tr(AU; 2) < Tr(A).

Ce qui donne pour tout a dans R
(a1,1 + ag2) cos (@) 4 (a1,2 — az1) sin (a) < (a1,1 + az2)

d’aprés Q2.aonaaj o =asz;.

Soit p et ¢ tels que 1 < p < g < n, posons Uy, ¢ = (bi j)1<ij<n-

On a
upqlep) = cos(a)e,+sin(a)egy,
upq(eq) = —sin(a)e, +cos(a)e,
upqlex) = exsik & {p,q}
ce qui donne
bpp = cos(a),b,,=—sin(a),by, =sin(a),byq =cos(a),
by = 1sik¢{p.q}
bi; = 0sit,jé{pq}eti#j
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Ainsi Uy, 4 est de la forme

1 0
0 0
0 1
cos(a) 0 ... 0 —sin(a)
0 1 0 0
Upy = 0 0
0 0 1 0
—sin(a) 0 ... 0 cos(a)
1 0
0 0
0 1

v) Par un raisonnement similaire & 2.b)ii), on trouve

n

Tr(AU, ) = Z ag. i + (Gpp + Gq,q) O () + (ap g — aq,p) sin (a) .
k=1
k¢{p.q}
vi) L’hypothese Tr(AU, ;) < Tr(A) donne :

(ap,p + aqg,q) €08 (@) + (ap,g — agp)sin (@) < app + aqq

Comme en Q2.b)iii), cette inégalité, valable pour tout «, donc a, 4 — a4, = 0, S0it a, ¢ = aq,. Ceci est vrai pour

tous p < ¢q donc vrai pour tout p,q. Ainsi, A est une matrice symétrique.

c)i) A est une matrice symétrique réelle. L’endomorphisme ¢ canoniquement associé & A (dans la base canonique de
R™, supposée orthonormée) est donc un endomorphisme symétrique (ou auto-adjoint).
Le théoréme spectral affirme que g est diagonalisable dans une base orthonormée de vecteurs propres.
Soit V = (v1,...,v,) une telle base, et 7; les valeurs propres associées : g(v;) = Y;v;.

ii) Soit j € [1,n]. On considere I’endomorphisme w; de R™ défini par

—vjsik=j
w;(vg) = .
v sik €l,n] et k#j

o La matrice de w; dans la base V est

A; =Diag(1,...,-1,...,1)

donc w; est une réflexion (la symétrie orthogonale par rapport d Uhyperplan orthogonal d vj).
Donc la matrice W; de w; relativement a la base B est W; = PAJ-P_1 ou P est la matrice de passage de B
AV ( qui sont deuz bases orthonormées) donc P est une matrice orthogonale et P~1 = PT.
Ainsi
W; = PA;PT = PDiag(1,...,—1,...,1)PT

W; est donc une matrice orthogonale.
o La matrice de g dans la base V est D4 = Diag(vy1,...,7n). Donc A = PDsPT et AW; = P(DaA;)PT, avec
DAA]' = Diag('yh N ,’}/jfl, —’Yj,’YjJrl, N ,’Yn)
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Ce qui donne
Te(AW;) = Tr(Dad;) = =7+ > %
k=
=

et ona Tr(Dad;) =325 — -

Tr(A) = Tr(Da) =Y W=7+ > W
k=1 k=1
=y

On en déduit ‘ Tr(AW;) = Tr(A) — 2v; ‘
e Ona W, € O,(R), I'hypothese Tr(AW;) < Tr(A) donne Tr(A) —2v; < Tr(A), donc —2v; < 0,ce qui implique
v 2 0.

d) On sait qu'une matrice symétrique réelle est positive (c’est-a-dire dans S, (R)) si et seulement si toutes ses valeurs

propres sont positives ou nulles.

Nous avons montré que A est symétrique (d’aprés Q2.b)vi)) et toutes ses valeurs propres sont positives ou nulles
(d’apres Q2.c)ii)), donc.
Ainsi on a montré que : ‘ A € S (R) si et seulement si VU € O(n) Tr(AU) < Tr(A) ‘

FIN
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