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RACINES CARRÉES DE MATRICES 

 
 
Notations 
 
Dans ce sujet, n est un entier naturel non nul et on note : 

( )nM \  la \ - algèbre des matrices carrées réelles de taille n. 

( ),1nM \  le \ - espace vectoriel des matrices à n lignes et une colonne. 

( )nGL \  le groupe des matrices inversibles de ( )nM \ . 

nI  la matrice unité de ( )nM \ . 

Id  l’application identité de n\ . 
Pour une matrice A de ( )nM \ , t A  est sa matrice transposée. 

( )nS \  le sous-espace vectoriel des matrices symétriques de ( )nM \ . 

( )nS + \  l’ensemble des matrices symétriques positives de ( )nM \ , c’est-à-dire des matrices A de 

( )nS \  vérifiant : pour toute matrice ( ),1 , 0t
nX M XAX∈ ≥\ . 

 
Si 1 2, ,..., nx x x  sont des réels, on note 1 2diag( , ,..., )nx x x  la matrice diagonale de ( )nM \  qui admet 
pour coefficients diagonaux les réels 1 2, ,..., nx x x  dans cet ordre. 
 
Si p est un entier naturel non nul, on notera 

∞
la norme infinie sur p\  :  

si ( )1 1
,..., , maxp

p ii p
x x x x x

∞ ≤ ≤
= ∈ =\ .  

Si pa∈\  et 0r > , on note ( , )B a r∞  la boule ouverte de centre a et de rayon r pour la norme 
∞

. 
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Objectifs 
 
Soit A une matrice de ( )nM \ , on dit qu’une matrice R de ( )nM \  est une racine carrée de A si 

2R A= . 
On note Rac( )A  l’ensemble des racines carrées de A, c’est-à-dire  

( ){ }2Rac( ) ,nA R M R A= ∈ =\ . 
 
Le problème propose de déterminer les racines carrées de A dans différents exemples, (on pourra 
constater qu’une matrice peut admettre parfois une infinité de racines) et d’étudier quelques 
propriétés topologiques de Rac( )A . 
 
Les trois parties du problème sont indépendantes.  
Les trois premiers exemples de la partie I sont tous indépendants.  
 
 
I – DÉTERMINATION DE Rac(A) DANS QUELQUES EXEMPLES  
 
Exemple 1 : Cas où A possède n valeurs propres distinctes 
On suppose que la matrice ( )nA M∈ \  admet n  valeurs propres réelles 1 2 ... nλ λ λ< < <  . 
 

1. Justifier l’existence d’une matrice ( )nP M∈ \  inversible telle que 1A PDP−=  où 

( )1 2diag , ,..., nD λ λ λ= , puis montrer que R est une racine carrée de A, si et seulement si la 

matrice 1S P RP−=  est une racine carrée de D. 
 
2. Racines carrées de D 
 Soit S une racine carrée de D. 

a. Montrer que DS SD= . 
b. En déduire que la matrice S est diagonale. 
c. On note alors ( )1 2diag , ,..., nS s s s= . Que vaut 2

is  lorsque { }1,...,i n∈ ? 

d. Que peut-on dire de ( )Rac A  si  A admet une valeur propre strictement négative ? 
e. Si on suppose que toutes les valeurs propres de A  sont positives ou nulles, déterminer 

les racines carrées de la matrice D. On pourra poser { }1, 1iε ∈ − +  pour { }1,...,i n∈ . 
 

3. Écrire toutes les racines carrées de A à l’aide de la matrice P. Combien de racines carrées A 
admet-elle ? (On discutera selon le signe des valeurs propres de A).  

 
4. Application :  

 Écrire les racines carrées de 
11 5 5

5 3 3
5 3 3

A
− 

 = − − 
 − 

 à l’aide de la matrice P que l’on 

déterminera.  
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Exemple 2 : Cas où A est la matrice nulle de ( )nM \  
Dans cet exemple, on cherche à déterminer les racines carrées de la matrice nulle. 
Soit ( )nR M∈ \ , une racine carrée de la matrice nulle. 
 

5. Soit  f  l’endomorphisme de n\ dont R est la matrice dans la base canonique de n\ . On 
note r le rang de f .  

a. Comparer Im f et Ker f puis montrer que 
2
nr ≤ . 

b. On suppose f  non nul, donc 1r ≥ . Soit ( )1,..., re e  une base de Im f  que l’on complète 

avec ( )1,...,r n re e+ −  pour former une base de Ker f . Pour { }1,...,i r∈ , on note iu  le 
vecteur tel que ( )i if u e= . 

 Montrer que la famille ( )1 1,..., , ,...,n r re e u u−=B  est une base de n\  puis écrire la 
matrice de f dans la base B . On notera rM cette matrice. 

6. a. Déterminer les racines carrées dans ( )nM \  de la matrice nulle. 

b. Application : déterminer dans ( )4M \ , les racines carrées de la matrice nulle. 
  

Exemple 3 : Cas où nA I=  
 

7. Soit R une racine carrée de l’unité nI . 
a. Vérifier que R est une matrice inversible. 
b. Montrer que R est semblable à une matrice diagonale que l’on décrira.  
 

8. Déterminer Rac( )nI . On pourra poser { }1, 1iε ∈ − +  pour { }1,...,i n∈ . 
 
Exemple 4 : Cas où A est une matrice symétrique réelle 
Dans cet exemple, toutes les matrices que l’on considérera appartiennent à ( )nM \ . 
 

9. Une matrice symétrique admet-elle nécessairement une racine carrée ? 
 
10. Montrer qu’une matrice symétrique positive admet au moins une racine carrée qui est elle 

même symétrique et positive. 
 

Remarque : On peut montrer l’unicité de cette racine carrée dans ( )nS + \  mais ce ne sera pas utile 
pour la suite du problème. 
 
 
II – ÉTUDE TOPOLOGIQUE DE Rac(A) 
 
Si A est une matrice de ( )nM \  qui a pour coefficients ( ), 1 ,i j i j n

a
≤ ≤

, on définit une norme en 

posant ( ) ,1 ,
max i ji j n

N A a
≤ ≤

= . On munit ( )nM \  de cette norme N.  



 4

11. Fermeture de Rac( )A  
 Soit A une matrice de ( )nM \ . Montrer que Rac( )A  est une partie fermée de ( )nM \ . 

 
12. Étude du caractère borné de Rac( )nI  

a. Un exemple instructif 

 Pour tout entier naturel q, on pose 
1 0

1qS
q
 

=  − 
. Calculer 2

qS . 2Rac( )I  est-elle une 

partie bornée de ( )2M \  ? 

b. Rac( )nI  est-elle une partie bornée de ( )nM \  pour 3n ≥  ? 
c. Application : pour cette question, 2n ≥ .  
 Montrer qu’il n’existe pas de norme   « surmultiplicative » sur ( )nGL \ , c’est-à-

dire vérifiant pour tous A et B dans ( )nGL \ , AB A B≥ . 
 
 
III – ZÉROS DE FONCTIONS POLYNOMIALES. APPLICATION À LA DÉTERMINATION DE 
L’INTÉRIEUR DE Rac(A) 
 
Soit p un entier naturel non nul. On munit p\  de la norme infinie 

∞
.  

 
On note pΓ  l’ensemble des fonctions polynomiales sur p\ , c’est-à-dire :  

si pP∈Γ , il existe N un entier naturel et une famille de réels { }1 ,..., 1, 1 ,...,
pi i pa i i N≤ ≤  tels que 

( ) ( ) 1

1

1

1 2 1 1 2 ,..., 1
1 ,...,

, ,..., ... , , ,..., ... p

p

p

ii
p p p i i p

i i N
x x x I I P x x x a x x

≤ ≤

∀ ∈ × × = ∑  . 

 

Par exemple si 3p = , 2 5
1 2 3 1 1 2 3 2( , , ) 5 3 4P x x x x x x x x= + +  est une fonction polynomiale sur 3\ . 

Si 1p = , 1Γ  est l’ensemble des fonctions polynômes sur \ . 
 
Enfin, si pP∈Γ , on pose ( ) ( ) ( ){ }1 2 1 2, ,..., , , ,..., 0p

p pZ P x x x P x x x= ∈ =\  ( ( )Z P est l’ensemble 

des zéros de la fonction polynomiale P). 
 
L’objectif de cette partie est d’étudier l’intérieur de ( )Z P , afin de déterminer l’intérieur de 

( )Rac A . 
 
On rappelle que si Ω  est une partie de p\ , un vecteur a de p\  est un point intérieur à Ω  s’il 
existe un nombre réel r strictement positif tel que ( ),B a r∞ ⊂ Ω  et que l’intérieur d’une partie est 
l’ensemble de ses points intérieurs. 
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13. Questions préliminaires : 
a. Soit ( )1,...,

p
pa a a= ∈\  et 0r > . Montrer que ( , )B a r∞  peut s’écrire comme produit 

de p intervalles. 
b. Soient F et G deux parties de p\ . On suppose que F et G sont d’intérieur vide, 

montrer que F G∩  est encore d’intérieur vide. 
 

14. Exemples d’ensemble des zéros de fonctions polynomiales 
a. Dans cette question 1p = . Soit P une fonction polynôme sur \ . Dans quel cas ( )Z P  

est-il infini ? Justifier votre réponse. 
b. Dans cette question 2p = . On considère ( )1 2 1 2, 2 1P x x x x= − −  et ( ) 2

1 2 1 2,Q x x x x= − . 

Représenter graphiquement dans le plan 2\  les ensembles ( )Z P  et ( )Z Q . 

  ( )Z P  et ( )Z Q  sont-ils infinis ? 
 

15. Intérieur de l’ensemble des zéros d’une fonction polynomiale 
Soit pP∈Γ . 

a. Soient 1 2, ,..., pI I I  des parties infinies de \ . Montrer par récurrence que si la fonction 
polynomiale P s’annule sur 1 2 ... pI I I× × × , alors P est la fonction nulle.  

b. En déduire que si P s’annule sur une partie d’intérieur non vide, P est la fonction nulle.  
c. Si l’on suppose que P n’est pas la fonction nulle, que vaut l’intérieur de ( )Z P  ? 

 
16. Application à l’étude de l’intérieur de Rac(A) 

Dans cette question, on confondra les espaces vectoriels ( )nM \  et 
2

\n . Par exemple, on 

prendra la liberté d’écrire que pour ( ) ( ) 2

, 1 ,
, n

n i j i j n
M M M m

≤ ≤
∈ = ∈\ \ , sans se soucier de 

l’ordre des termes. 
Soit A  une matrice de ( )nM \ . 

a. Écrire ( )Rac A  sous forme d’un sous-ensemble de 
2n\  puis montrer qu’il existe des 

éléments 21 2, ,...,
n

P P P  de 2n
Γ  tels que ( ) ( )

2

1
Rac

n

l
l

A Z P
=

= ∩ . 

b. Déterminer l’intérieur de ( )Rac A . 
 
 

Fin de l’énoncé 
 



I. Détermination de Rac(A) dans quelques exemples.

1. Les sous espaces propres Eλi
(A) sont de dimension ≥ 1 et en somme directe. Leur somme a

donc une dimension au moins égale à n. Comme elle est incluse dans Rn, sa dimension est en
réalité égale à n et chaque Eλi

(A) a une dimension égale à 1. Notons (fi) une base de Eλi
(A).

La famille (f1, . . . , fn) est une base de Rn. Si P est la matrice de la base canonique de Rn aux
fi alors P−1AP est la matrice dans la base (fi) de l’endomorphisme canoniquement associé à A.
Par choix des fi, cette matrice est diag(λ1, . . . , λn) et on a donc

A = PDP−1 avec D = diag(λ1, . . . , λn)

Soit R ∈ Mn(R) et S = P−1RP . On a R2 = A si et seulement si P−1R2P = D (il y a équivalence
car on revient en arrière en multipliant par P à gauche et P−1 à droite) c’est à dire S2 = D. On
peut donc écrire

Rac(A) = P.Rac(D).P−1

2. a. On a SD = S3 = DS.

b. On fait le produit matriciel pour obtenir

∀i, j, Si,jλj =
n∑

k=1

Si,kDk,j =
n∑

k=1

Di,kSk,j = λiSi,j

Les λk étant deux à deux distincts, on a donc

∀i 6= j, Si,j = 0

et S est diagonale.

c. On a alors S2 = diag(s2
1, . . . , s

2
n). Comme S2 = D, on a donc

∀i, s2
i = λi

d. Si il existe un i tel que λi < 0, les relations précédentes sont impossible et donc

Rac(A) = ∅

e. Si tous les λi sont positifs, on vient de voir que

Rac(D) ⊂ {diag(ε1

√
λ1, . . . , εn

√
λn)/ ∀i, εi = ±1}

Réciproquement, si S = diag(ε1

√
λ1, . . . , εn

√
λn) (où εi = ±1) alors S2 = D. L’inclusion

ci-dessus est une égalité.

3. L’application M 7→ P−1MP est une bijection de Rac(A) dans Rac(D).

- Si λ1 < 0, on a vu en 2.d que Rac(A) = ∅. Il n’y a donc pas de racine carrée pour A.

- Si λ1 ≥ 0 alors une racine carrée de D est connue par le choix des εi et

Rac(A) = {P.diag(ε1

√
λ1, . . . , εn

√
λn).P−1/ ∀i, εi = ±1}

Deux choix différents des εi donneront deux racines carrées distinctes de D sauf dans le cas
où λ1 = 0. On a donc

Card(Rac(A)) = 2n−1 si λ1 = 0

Card(Rac(A)) = 2n si λ1 > 0

1

Corrigé



4. (0, 1, 1) est vecteur propre associé à la valeur propre 0. (1, 1,−1) est vecteur propre associé à la
valeur propre 1. Avec la trace, on voit que la dernière valeur propre est 16. Une résolution de
système montre que (2,−1, 1) est vecteur propre associé. On pose donc

P =

 0 1 2
1 1 −1
1 −1 1


On a alors P−1AP = diag(0, 1, 16). A admet quatre racines carrées qui sont

P.diag(0, 1, 4).P−1, P.diag(0,−1, 4).P−1, P.diag(0, 1,−4).P−1, P.diag(0,−1,−4).P−1

ou encore 3 −1 1
−1 1 −1
1 −1 1

 ,

 7/3 −5/3 5/3
−5/3 1/3 −1/3
5/3 −1/3 1/3

 ,

 −7/3 5/3 −5/3
5/3 −1/3 1/3
−5/3 1/3 −1/3

 ,

 −3 1 −1
1 −1 1
−1 1 −1


On remarque bien sûr que les matrices sont deux à deux opposées.

5. a. R2 = 0 se traduit par f ◦ f = 0 et donc par

Im(f) ⊂ Ker(f)

Or, le théorème du rang indique que r + dim(Ker(f)) = n. Comme dim(Ker(f)) ≥ r, on
a donc

r ≤ n

2
b. La famille B ayant n éléments, il suffit de montrer qu’elle est libre ou génératrice pour

conclure que c’est une base de Rn. Supposons donc que

(∗) :
n−r∑
i=1

αiei +
r∑

i=1

βiui = 0

Avec les notations de l’énoncé, ceci s’écrit

r∑
i=1

αif(ui) +
n−r∑

i=r+1

ei +
r∑

i=1

βiui = 0

En composant par f , on obtient (avec f2 = 0 et f(ei) = 0 si i ∈ {r + 1, . . . , n− r})
r∑

i=1

βiei =
r∑

i=1

βif(ui) = 0

Comme (e1, . . . , er) est libre, les βi sont nuls. En reportant dans (∗) et comme (e1, . . . , en−r)
est libre, les αi sont aussi nul. Ainsi, B est libre et c’est une base de Rn.
Par choix des vecteurs de B, on a (définition par blocs)

Mr = Mat(f,B) =
(

0 Ir

0 0

)
6. a. Si R ∈ Rac(A) alors soit R = 0 soit il existe une matrice inversible P et un entier r ∈ [1..n/2]

telle que R = PMrP
−1.

Réciproquement, la matrice nulle est une racine carrée de 0 et si r ≤ n/2, un produit par
blocs montre que M2

r = 0 et donc (PMrP
−1)2 = PM2

r P−1 = 0. Ainsi,

Rac(0) = {PMrP
−1/ P ∈ GLn(R), r ∈ [1, n/2]} ∪ {0}
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b. Dans le cas n = 4, les racines carrées de 0 sont 0 et les matrices semblables à l’une des deux
matrices 

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ou


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


7. a. R2 = In donne det(R)2 = 1 et donc det(R) 6= 0. R est donc inversible.

b. X2 − 1 est un polynôme qui annule R. Comme il est scindé à racines simples, R est
diagonalisable. En outre, les valeurs propres de R sont racines de X2−1 et ne peuvent
valoir que 1 ou −1. Ainsi, R est semblable à une matrice diagonale où les coefficients
diagonaux valent 1 ou −1.

8. Ce qui précède montre que

Rac(In) ⊂
{
P.diag(ε1, . . . , εn).P−1/ P ∈ GLn(R), ∀i, εi ∈ {−1,+1}

}
Réciproquement D = diag(ε1, . . . , εn) verifie D2 = In quand les εk valent 1 ou −1 et
(PDP−1)2 = PD2P−1 = In. L’inclusion précédente est donc une égalité.

9. diag(−1,−2, . . . ,−n) est une matrice symétrique réelle qui, d’après l’exemple 1, n’admet
pas de racine carrée.

10. Soit A ∈ S+
n (R). Le théorème spectrale donne l’existence d’une matrice orthogonale P et

d’une matrice diagonale D telles que P−1AP = D. Les coefficients diagonaux di de D sont
valeurs propres pour A. Si Xi est vecteur propre associé alors

0 ≤ tXiAXi = tXi(diXi) = di‖Xi‖2

où ‖.‖ est le norme euclidienne. Comme ‖Xi‖2 > 0 (Xi est non nul puisque c’est un vecteur
propre), on a di ≥ 0. On peut alors poser

R = P.diag(
√

d1, . . . ,
√

dn).P−1 = P∆P−1

P étant orthogonale on a P−1 = tP et R est symétrique. Par ailleurs, R2 = PDP−1 = A
et R est racine carrée de A. Enfin, R est positive :

∀X tXRX = tXP∆tPX =
n∑

i=1

√
diy

2
i avec Y = tPX

et cette quantité est bien positive. On a finalement montré que

Rac(A) ∩ S+
n (R) 6= ∅

II. Etude topologique de Rac(A).

Mn(R) étant de dimension finie, toutes les normes y sont équivalentes. On pourra choisir la
norme N de l’énoncé ou toute autre norme. Cela ne change rien du point de vue topologique.

11. Par théorèmes généraux, R 7→ R2 est continue sur Mn(R) (chaque fonction coordonnée l’est
comme fonction polynomiale des coefficients de R). Ainsi, si (Rk) est une suite convergente
d’éléments de limite R alors R2

k → R2.
Ainsi, si (Rk) est une suite convergente d’éléments de Rac(A), la limite est dans Rac(A).
Ce dernier ensemble est donc fermé.

12. a. On a S2
q = I2. Comme N(Sq) = max(|q|, 1) → +∞ quand q → +∞, Rac(I2) n’est pas

borné.
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b. Définissons par blocs la matrice Mq =
(

Sq 0
0 In−q

)
. On a alors M2

q = In (calcul par

blocs) et N(Mq) → +∞ quand q → +∞. Ainsi, Rac(In) n’est pas borné pour n ≥ 3.
c. On vient de voir que l’on peut trouver une suite (Rk) de racines carrées de In telles

que (Rk) n’est pas bornée. Si, par l’absurde, il existait une norme surmultiplicative ‖.‖
alors on aurait

∀k, ‖Rk‖2 ≤ ‖R2
k‖ = ‖I2‖

Le membre de droite est constant et celui de gauche de limite infinie (voir remarque
préliminaire en début de partie). On obtient une contradiction ce qui prouve la non
existence d’une norme surmultiplicative.

Partie III. Intérieur de Rac(A).

13. a. On a

B∞(a, r) =
p∏

i=1

]ai − r, ai + r[

b. Soit a ∈ F ∩ G. Si, par l’absurde, il existait r > 0 tel que B∞(a, r) ⊂ F ∩ G alors on
aurait a fortiori B∞(a, r) ⊂ F et donc a serait intérieur à F ce qui est exclus (et donne
une contradiction). F ∩G n’a donc pas de point dintérieur.
Remarque : pour arriver à cette conclusion, il suffit que F OU G soit d’intrieur vide.

14. a. Le seul polynôme admettant une infinité de racines est le polynôme nul. Pour le voir,
on peut, par exemple, prouver par récurrence q’un polynôme non nul de degré n admet
au plus n racines.

- Si P est constant non nul il n’admet pas de racine.
- Supposons le résultat vrai jusqu’au rang n. Soit P de degré n + 1. Entre deux

racines de P , il y a une racine de P ′ (théorème de Rolle). Comme P ′ admet au
plus n racines (deg(P ′) = deg(P )− 1 = n), P en admet au plus n + 1.

On peut aussi prouver le résultat (et on n’utilise alors plus la structure ordonnée de R)
en montrant que si P (a) = 0 alors (X − a) divise P et en raisonnant par degré.

b. Dans le plan (0, x1, x2), 2x1 − x2 = 1 est l’équation d’une droite. Z(P ) est donc infini.
x2

1 − x2 = 0 est l’équation d’une parabole et Z(Q) est aussi infini.
15. a. Le résultat pour p = 1 a été justifié en question 14.a.

Supposons le résultat vrai jusqu’à un rang p ≥ 1. Soient alors P une fonction poly-
nomiale qui s’annule sur I1 × · · · × Ip+1 où chaque Ik est une partie infinie de R. En
ordonnant les puissances de xp+1, on peut écrire

P (x1, . . . , xp+1) =
N∑

i=0

Pi(x1, . . . , xp)xi
p+1

où chaque Pi est dans Γp.
Fixons x1, . . . , xp avec xi ∈ Ii et considérons l’expression précédente comme fonction
de xp+1. C’est une fonction polynomiale qui s’annule en une infinité de points. D’après
l’initialisation, c’est le polynôme nul. On a donc

∀i ∈ {1, .., N}, ∀(x1, . . . , xp) ∈ I1 × · · · × Ip, Pi(x1, . . . , xp) = 0

L’hypothèse de récurrence donne la nullité des Pi et donc celle de P . On a ainsi prouvé
le résultat au rang p + 1 et complété la récurrence.

b. D’après la question 13.a, toute partie d’intérieur non vide contient une sous-partie
∏

Ik

où chaque Ik est infini (intervalle de longueur 2r > 0). Si P s’annule sur une partie
d’intérieur non vide, P est alrs nul avec la question précédente.
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c. En contraposant le résultat de la question précédente, si P 6= 0 alors Z(P ) est d’intérieur
vide.

16. a. R2 est une matrice dont le coefficient générique est

n∑
k=1

Ri,kRk,j

Considérons alors

Qi,j =

(
n∑

k=1

xi,kxk,j

)
− ai,j ∈ Γn2

Par définition de Rac(A), on a

Rac(A) =
⋂

1≤i,j≤n

Z(Qi,j)

ce qui fait apparâıtre Rac(A) comme sous-ensemble de Rn2
.

b. Comme intersection de parties d’intérieur vide, Rac(A) est d’intérieur vide avec la
question 13.b.
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