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RACINES CARREES DE MATRICES

Notations

Dans ce sujet, n est un entier naturel non nul et on note :

M, (R) la R - algébre des matrices carrées réelles de taille n.

M, (R) le R - espace vectoriel des matrices & # lignes et une colonne.
GL,(R) le groupe des matrices inversibles de M, (R).

I, la matrice unité de M, (R).

Id 1’application identité de R".
Pour une matrice 4 de M, (R), ‘4 est sa matrice transposée.

S, (R) le sous-espace vectoriel des matrices symétriques de M, (R).

n

S, (R) vérifiant : pour toute matrice X e M, | (R), 'XAX 0.

A (R) I’ensemble des matrices symétriques positives de M, ]R) , ¢’est-a-dire des matrices A4 de

Si x,,x,,...,x, sontdes réels, on note diag(x,,x,,...,x,) la matrice diagonale de M (R) qui admet

pour coefficients diagonaux les réels x,,x,,...,x, dans cet ordre.

Si p est un entier naturel non nul, on notera || ||w la norme infinie sur R?” :

1 — p
si x—(xl,...,xp)eR ,

x|

X|| =max
0

1<i<p

Si aeR” et r>0,onnote B, (a,r) laboule ouverte de centre a et de rayon » pour la norme || ”w .
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Objectifs

Soit 4 une matrice de M, (R), on dit qu’une matrice R de M, (R) est une racine carrée de 4 si
R*=4.
On note Rac(A4) I’ensemble des racines carrées de 4, c¢’est-a-dire

Rac(4)={ReM,(R), R’ =4].

Le probléme propose de déterminer les racines carrées de 4 dans différents exemples, (on pourra
constater qu’une matrice peut admettre parfois une infinité de racines) et d’étudier quelques
propriétés topologiques de Rac(A4).

Les trois parties du probléme sont indépendantes.
Les trois premiers exemples de la partie I sont tous indépendants.

I — DETERMINATION DE Rac(4) DANS QUELQUES EXEMPLES

Exemple 1 : Cas ou 4 posséde n valeurs propres distinctes
On suppose que la matrice 4€ M, (R) admet n valeurs propres réelles 4 <4, <..<4, .

1. Justifier I’existence d’une matrice Pe M, (R) inversible telle que A4=PDP"' ou
D =diag (4, 4,,...,4, ), puis montrer que R est une racine carrée de 4, si et seulement si la

matrice S = P'RP est une racine carrée de D.

2. Racines carrées de D
Soit S une racine carrée de D.
a. Montrer que DS =SD.
b. En déduire que la matrice S est diagonale.

c. On note alors S = diag(s,,s,,....s, ) . Que vaut s’ lorsque i € {1,...n}?
d. Que peut-on dire de Rac(A) si A admet une valeur propre strictement négative ?

e. Si on suppose que toutes les valeurs propres de A sont positives ou nulles, déterminer
les racines carrées de la matrice D. On pourra poser ¢, € {—1,+1} pour i e{l,...,n}.

3. Ecrire toutes les racines carrées de 4 a I’aide de la matrice P. Combien de racines carrées 4
admet-elle ? (On discutera selon le signe des valeurs propres de 4).

4. Application :

11 -5 5
Ecrire les racines carrées de A=|-5 3 -3| a I'aide de la matrice P que I’on
5 -3 3

déterminera.



Exemple 2 : Cas ol 4 est la matrice nulle de M, (R)

Dans cet exemple, on cherche a déterminer les racines carrées de la matrice nulle.
Soit R e M, (R), une racine carrée de la matrice nulle.

5. Soit f I’endomorphisme de R”dont R est la matrice dans la base canonique de R". On
note 7 le rang de /.

. n
a. Comparer Im f et Ker f puis montrer que » < 3

b. On suppose / non nul, donc r>1. Soit (e,,...,e,) une base de Im f/ que I’on compléte
avec (e,,,,....e,,) pour former une base de Ker /. Pour ie{l,..,r}, on note u, le
vecteur tel que f(u,)=e,.

Montrer que la famille B=(el,...,en_r,ul,...,ur) est une base de R" puis écrire la
matrice de f'dans la base B. On notera M, cette matrice.

6.  a. Déterminer les racines carrées dans M, (R) de la matrice nulle.

b. Application : déterminer dans M, (R) , les racines carrées de la matrice nulle.
Exemple 3 : Casou A=1,
7. Soit R une racine carrée de 'unité /, .
a. Vérifier que R est une matrice inversible.
b. Montrer que R est semblable a une matrice diagonale que 1’on décrira.

8. Déterminer Rac(/,). On pourra poser &, € {—1,+1} pour i €{l,...,n}.

Exemple 4 : Cas ou A4 est une matrice symétrique réelle
Dans cet exemple, toutes les matrices que I’on considérera appartiennenta M, (R).

9. Une matrice symétrique admet-elle nécessairement une racine carrée ?

10. Montrer qu’une matrice symétrique positive admet au moins une racine carrée qui est elle
méme symétrique et positive.

Remarque : On peut montrer I’unicité de cette racine carrée dans S, (R) mais ce ne sera pas utile
pour la suite du probléme.
II —- ETUDE TOPOLOGIQUE DE Rac(4)

Si 4 est une matrice de M, (]R) qui a pour coefficients (al.’ j) , on définit une norme en

1<i,j<n

posant N (A4) = max al.’j| . On munit M, (R) de cette norme N.

I<i, j<n
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11. Fermeture de Rac(A)
Soit A une matrice de M, (R). Montrer que Rac(A) est une partie fermée de M, (R).

12. Etude du caractére borné de Rac(/,)
a. Un exemple instructif

0
Pour tout entier naturel g, on pose S, =( J Calculer S qz. Rac(/,) est-elle une

qg -1
partie bornée de M, (R) ?

b. Rac(/,) est-elle une partie bornée de M, (R) pour n>3 ?

¢. Application : pour cette question, n>2.
Montrer qu’il n’existe pas de norme || || « surmultiplicative » sur GL, (R), c’est-a-

dire vérifiant pour tous 4 et B dans GL, (R), AB” > ||A||||B|| .

III — ZEROS DE FONCTIONS POLYNOMIALES. APPLICATION A LA DETERMINATION DE
L’INTERIEUR DE Rac(A4)

Soit p un entier naturel non nul. On munit R” de la norme infinie || ||m .

On note I', I’ensemble des fonctions polynomiales sur R”, ¢’est-a-dire :

si Pel’ , il existe N un entier naturel et une famille de réels {aiwl. , 1<i,ni, <N } tels que

j— il il’
‘v’(xl,xz,...,xp)ell><...><Ip, P(xl,xz,...,xp)— Z Ay i X0 Xy

P
1<4),....i, SN

Par exemple si p=3, P(x,,X,,%;) =5x] +3x,x,x, +4x, est une fonction polynomiale sur R’.

Si p=1, I'| est’ensemble des fonctions polynomes sur R .

Enfin, si Pel’,, on pose Z(P) = {(xl,xz,...,xp) eR?, P(xl,xz,...,xp) = O} (Z(P) est I’ensemble

des zéros de la fonction polynomiale P).

L’objectif de cette partie est d’étudier I'intérieur de Z(P), afin de déterminer I’intérieur de
Rac(4).

On rappelle que si Q est une partie de R”, un vecteur a de R” est un point intérieur a Q s’il
existe un nombre réel 7 strictement positif tel que B, (a,r) c Q et que l'intérieur d’une partie est

I’ensemble de ses points intérieurs.



13.

14.

15.

16.

Questions préliminaires :
a. Soit a = (al,...,ap)e R” et r>0. Montrer que B, (a,r) peut s’écrire comme produit

de p intervalles.

b. Soient F et G deux parties de R”. On suppose que F et G sont d’intérieur vide,
montrer que F' NG est encore d’intérieur vide.

Exemples d’ensemble des zéros de fonctions polynomiales
a. Dans cette question p =1. Soit P une fonction polynome sur R . Dans quel cas Z (P)

est-il infini ? Justifier votre réponse.
b. Dans cette question p=2. On considére P(x,,x,)=2x—x,—1 et O(x,x,)=x —x,.

Représenter graphiquement dans le plan R* les ensembles Z (P) et Z (Q)
Z(P) et Z(Q) sont-ils infinis ?

Intérieur de I’ensemble des zéros d’une fonction polynomiale
Soit PeT’,.

a. Soient /,1,,...,I, des parties infinies de R . Montrer par récurrence que si la fonction
polynomiale P s’annule sur 7, x I, x...x 1, alors P est la fonction nulle.

b. En déduire que si P s’annule sur une partie d’intérieur non vide, P est la fonction nulle.
¢. Sil’on suppose que P n’est pas la fonction nulle, que vaut I’intérieur de Z (P) ?

Application a I’étude de I’intérieur de Rac(A4)

Dans cette question, on confondra les espaces vectoriels M, (R) et R” . Par exemple, on

prendra la liberté d’écrire que pour M e M, (R), M = (m,-,_;) eR” , sans se soucier de

1<i,j<n
I’ordre des termes.
Soit 4 une matrice de M, (R).

Lo 2 . . .
a. Ecrire Rac(A) sous forme d’un sous-ensemble de R” puis montrer qu’il existe des

¢léments R, P,...,P, de T , tels que Rac(A):;OlZ(P,).

b. Déterminer I’intérieur de Rac(A).

Fin de I’énoncé
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Corrigeé

I. Détermination de Rac(A) dans quelques exemples.

1.

2.

3.

Les sous espaces propres E),(A) sont de dimension > 1 et en somme directe. Leur somme a
donc une dimension au moins égale a n. Comme elle est incluse dans R", sa dimension est en
réalité égale a n et chaque E),(A) a une dimension égale & 1. Notons (f;) une base de E},(A).
La famille (fi,..., fn) est une base de R™. Si P est la matrice de la base canonique de R™ aux
fi alors P71 AP est la matrice dans la base (f;) de ’endomorphisme canoniquement associé & A.
Par choix des f;, cette matrice est diag(\1,...,\,) et on a donc

A=PDP™! avec D =diag(\,...,\n)

Soit R € M, (R) et S = P~'RP. On a R? = Asi et seulement si P~'R?P = D (il y a équivalence
car on revient en arriere en multipliant par P & gauche et P~! & droite) c’est & dire S2 = D. On

peut donc écrire
Rac(A) = P.Rac(D).P~!

a. Ona SD =83 = DS.

b. On fait le produit matriciel pour obtenir

n n
Vi,j, SigAi =) SixDuj =) DikSk; = NiSi
k=1 k=1

Les A\ étant deux a deux distincts, on a donc

Vi j, Sij=0
et S est diagonale.
c. On a alors S? = diag(s?,...,s2). Comme S? = D, on a donc
Vi, 52 =\

d. Si il existe un 7 tel que A; < 0, les relations précédentes sont impossible et donc
Rac(A) =10
e. Si tous les \; sont positifs, on vient de voir que
Rac(D) C {diag(e1\/A1,...,en/An)/ Vi, €5 = 1}

Réciproquement, si S = diag(e1v/A1,...,enVAn) (0l & = £1) alors S2 = D. L’inclusion
ci-dessus est une égalité.

L’application M +— P~1MP est une bijection de Rac(A) dans Rac(D).

- Si\; <0, onavuen 2.d que Rac(A) = 0. Il n’y a donc pas de racine carrée pour A.

- Si A1 > 0 alors une racine carrée de D est connue par le choix des ¢; et
Rac(A) = {P.diag(e1\/ M, - en/ )P Vi, e; = £1}

Deux choix différents des ¢; donneront deux racines carrées distinctes de D sauf dans le cas
ou A1 = 0. On a donc
Card(Rac(A)) =2""1 si A\ =0

Card(Rac(A)) =2" si A1 >0



4. (0,1,1) est vecteur propre associé a la valeur propre 0. (1,1, —1) est vecteur propre associé a la
valeur propre 1. Avec la trace, on voit que la derniére valeur propre est 16. Une résolution de
systéme montre que (2, —1, 1) est vecteur propre associé. On pose donc

0 1 2
P=(1 1 -1
1 -1 1

On a alors P~'AP = diag(0,1,16). A admet quatre racines carrées qui sont

P.diag(0,1,4).P~, P.diag(0,—1,4).P~', P.diag(0,1,—4).P~, P.diag(0, -1, —4).P~"

ou encore
3 -1 1 7/3 —5/3 5/3 -7/3 5/3 —5/3 -3 1 -1
-1 1 -1 |, =53 1/3 —1/3 |, 5/3 -1/3 1/3 |, | 1 -1 1
1 -1 1 5/3 —1/3 1/3 -5/3 1/3 —1/3 -1 1 -1

On remarque bien sir que les matrices sont deux a deux opposées.
5. a. R? =0 se traduit par f o f =0 et donc par
Im(f) C Ker(f)

Or, le théoreme du rang indique que r + dim(Ker(f)) = n. Comme dim(Ker(f)) > r, on
a donc
n
r< —
-2
b. La famille B ayant n éléments, il suffit de montrer qu’elle est libre ou génératrice pour
conclure que c’est une base de R™. Supposons donc que

n—r T
(x) : Zaiei + Zﬁlul =0
i=1 i=1

Avec les notations de I’énoncé, ceci s’écrit

Zaif(ui) + i: €; +Zﬁiui =0
i=1 i=r+1 i=1

En composant par f, on obtient (avec f2 =0et f(e;) =0siic {r+1,...,n—1r})

Zﬂiei = Zﬁif(ui) =0
i=1 i=1

Comme (eq,...,e,) est libre, les 3; sont nuls. En reportant dans () et comme (eq, ..., ep—r)
est libre, les «; sont aussi nul. Ainsi, B est libre et ¢’est une base de R™.
Par choix des vecteurs de B, on a (définition par blocs)

M, = Mat(f,B) = < 8 {; )

6. a. SiR € Rac(A) alors soit R = 0 soit il existe une matrice inversible P et un entier r € [1..n/2]
telle que R = PM, P!,
Réciproquement, la matrice nulle est une racine carrée de 0 et si 7 < n/2, un produit par
blocs montre que M? = 0 et donc (PM,P~1)?2 = PM2?P~! = 0. Ainsi,

Rac(0) = {PM,P~'/ P € GL,(R), r € [1,n/2]} U {0}



b.

7.

10.

Dans le cas n = 4, les racines carrées de 0 sont 0 et les matrices semblables a I'une des deux
matrices

000 1 0010
000 0 0001
o000 ™ loooo0
0000 0000

a. R? = 1I,, donne det(R)? =1 et donc det(R) # 0. R est donc inversible.

b. X2 — 1 est un polynoéme qui annule R. Comme il est scindé & racines simples, R est
diagonalisable. En outre, les valeurs propres de R sont racines de X2 —1 et ne peuvent
valoir que 1 ou —1. Ainsi, R est semblable & une matrice diagonale ou les coefficients
diagonaux valent 1 ou —1.

. Ce qui précede montre que

Rac(l,) C {P.diag(e1,...,en).P7"/ P € GL,(R), Vi, g; € {-1,+1}}

Réciproquement D = diag(e1,...,e,) verifie D? = I, quand les & valent 1 ou —1 et
(PDP~1)? = PD?2P~! = I,,. L’inclusion précédente est donc une égalité.

. diag(—1,—-2,...,—n) est une matrice symétrique réelle qui, d’apres I'exemple 1, n’admet

pas de racine carrée.

Soit A € S;F(R). Le théoreme spectrale donne I'existence d’une matrice orthogonale P et
d’une matrice diagonale D telles que P~'AP = D. Les coefficients diagonaux d; de D sont
valeurs propres pour A. Si X; est vecteur propre associé alors

0 <'XGAX; = X(d; X;) = dy| X2

ot |.|| est le norme euclidienne. Comme || X;||* > 0 (X; est non nul puisque c’est un vecteur
propre), on a d; > 0. On peut alors poser

R = Pdiag(\/dy,...,\/d,). P~ = PAP™!

P étant orthogonale on a P~! =P et R est symétrique. Par ailleurs, R> = PDP~! = A
et R est racine carrée de A. Enfin, R est positive :

n
VX 'XRX ='XPA'PX = \/dy} avec Y ='PX
i=1
et cette quantité est bien positive. On a finalement montré que

Rac(A)N S (R) #0

I1I. Etude topologique de Rac(A).

M, (R) étant de dimension finie, toutes les normes y sont équivalentes. On pourra choisir la
norme N de I’énoncé ou toute autre norme. Cela ne change rien du point de vue topologique.

11.

12.

Par théoremes généraux, R — R? est continue sur M, (R) (chaque fonction coordonnée ’est
comme fonction polynomiale des coefficients de R). Ainsi, si (Ry) est une suite convergente
d’éléments de limite R alors R% — R2,

Ainsi, si (Ry) est une suite convergente d’éléments de Rac(A), la limite est dans Rac(A).
Ce dernier ensemble est donc fermé.

a. On a S2 = I. Comme N(S;) = max(|g|,1) — +o00 quand g — +o0, Rac(lz) n’est pas
borné.



b. Définissons par blocs la matrice M, =

Sq 0
0 I,
blocs) et N(M,) — +oo quand g — +oco. Ainsi, Rac(l,) n’est pas borné pour n > 3.

>. On a alors Mg = I, (calcul par

. On vient de voir que 'on peut trouver une suite (Ry) de racines carrées de I, telles

que (Ry) n’est pas bornée. Si, par ’absurde, il existait une norme surmultiplicative ||.||
alors on aurait

k. [[Rell* < IRE] = [ 22|

Le membre de droite est constant et celui de gauche de limite infinie (voir remarque
préliminaire en début de partie). On obtient une contradiction ce qui prouve la non
existence d’une norme surmultiplicative.

Partie III. Intérieur de Rac(A).

13.

14.

15.

a. On a

p
Buo(a,r) = [ [Jai = rai + 1
=1

. Soit @ € F N G. Si, par absurde, il existait » > 0 tel que By (a,r7) C F'NG alors on

aurait a fortiori Boo(a,r) C F et donc a serait intérieur & F' ce qui est exclus (et donne
une contradiction). F' N G n’a donc pas de point dintérieur.
Remarque : pour arriver a cette conclusion, il suffit que F OU G soit d’intrieur vide.

. Le seul polynéme admettant une infinité de racines est le polynéme nul. Pour le voir,

on peut, par exemple, prouver par récurrence ¢ un polynéme non nul de degré n admet
au plus n racines.

- Si P est constant non nul il n’admet pas de racine.

- Supposons le résultat vrai jusqu’au rang n. Soit P de degré n + 1. Entre deux
racines de P, il y a une racine de P’ (théoreme de Rolle). Comme P’ admet au
plus n racines (deg(P’) = deg(P) — 1 =n), P en admet au plus n + 1.

On peut aussi prouver le résultat (et on n’utilise alors plus la structure ordonnée de R)
en montrant que si P(a) = 0 alors (X — a) divise P et en raisonnant par degré.

. Dans le plan (0, z1, z2), 221 — 2 = 1 est ’équation d’une droite. Z(P) est donc infini.

x% — x9 = 0 est I"équation d’une parabole et Z(Q)) est aussi infini.

. Le résultat pour p = 1 a été justifié en question 14.a.

Supposons le résultat vrai jusqu’a un rang p > 1. Soient alors P une fonction poly-
nomiale qui s’annule sur Iy x --- X I,41 ol chaque Ij est une partie infinie de R. En
ordonnant les puissances de x,,1, on peut écrire

N
P(x1,...,0p41) = ZPZ-(:Q, e Tp) T
i=0

ou chaque P; est dans I',.

Fixons x1,...,x, avec x; € I; et considérons l’expression précédente comme fonction
de xp 1. C’est une fonction polynomiale qui s’annule en une infinité de points. D’apres
I'initialisation, c’est le polynome nul. On a donc

ViE{l,..,N}, V(l‘l,...,.%'p) el x--- XIp, B(.Z‘l,...,.l'p):()

L’hypothese de récurrence donne la nullité des P; et donc celle de P. On a ainsi prouvé
le résultat au rang p + 1 et complété la récurrence.

. D’apres la question 13.a, toute partie d’intérieur non vide contient une sous-partie [ [ Iy

ou chaque I est infini (intervalle de longueur 2r > 0). Si P s’annule sur une partie
d’intérieur non vide, P est alrs nul avec la question précédente.



c. En contraposant le résultat de la question précédente, si P # 0 alors Z(P) est d’intérieur
vide.

a. R? est une matrice dont le coefficient générique est

n
j{:f?@kf%kg
k=1
Considérons alors
n
Qi,j = (Z xi,kxk,j> — Qi j S Fnz

k=1
Par définition de Rac(A), on a

RCLC(A) = m Z(de)

1<ij<n

ce qui fait apparaitre Rac(A) comme sous-ensemble de R,

b. Comme intersection de parties d’intérieur vide, Rac(A) est d’intérieur vide avec la
question 13.b.



