
1. Rappeler le développement en série entière de la fonction exponentielle et son domaine de validité.

*****

On pose, lorsque cela est possible, f (x) =
+∞

∑
n=0

xn

(n !)2 .

2. Montrer que la fonction f est définie sur R.

3. Justifier que f est de classe C∞ sur R.

4. Démontrer que la fonction f est lipschitzienne sur tout segment [a,b] de R.

5. Prouver que pour tout réel positif x, f ′(x) ≤ ex.

6. Soient x et y deux réels positifs. On note z =max(x, y). Prouver que l’on a : ∣ f (x)− f (y)∣ ⩽ ez ∣x−y∣.
7. Prouver que l’on a : f (x) − 1 ∼

x→0
x.

On pose, pour tout x > 0, g(x) = ∫
x

1

1
t [ f (t)]2 dt.

8. Justifier que g est de classe C∞ sur ]0,+∞[.
9. Étudier le signe de g sur ]0,+∞[.
10. Montrer que : g(x) ∼

x→0
ln(x).

11. Prouver que pour tout t > 0, on a : f (t) > 1 + t.

12. En déduire que g possède une limite finie lorsque x tend vers +∞.

13. Décomposer en éléments simples la fraction rationnelle F(X) = 1
X(1 + X)2 .

14. Démontrer que pour tout x > 1, on a :

g(x) ⩽ ln( x
x + 1

) + 1
x + 1

+ ln(2) − 1
2

15. En déduire que g est majorée par ln(2) sur ]0,+∞[.
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2. Montrer que la fonction f est définie sur R.

Solution: On utilise le critère de d’Alembert pour déterminer le rayon de convergence de cette

série entière :
1

(n+1)!2

1
n!2

= 1
(n+1)2

→ 0 lorsque n → +∞ donc R = +∞ et cela montre que f est définie

sur R.

3. Justifier que f est de classe C∞ sur R.

Solution: Par propriété du cours, la somme d’une série entière est de classe C∞ sur son intervalle
ouvert de convergence (qui est R) ici.

4. Démontrer que la fonction f est lipschitzienne sur tout segment [a, b] de R.

Solution: Sur tout segment [a, b] de R, f est de classe C1 donc f ′ y est bornée (par le théorème des
bornes atteintes) et par corollaire du théorème des accroissements finis, elle est lipschitzienne.

5. Prouver que pour tout réel positif x, f ′(x) ≤ ex.

Solution: Soit x ≥ 0. Par propriété du cours, on a f ′(x) =
∑+∞

n=0
(n+1)
(n+1)!2

xn. Or, pour tout n ∈ N,
n+1

(n+1)!2
≤ 1

n!
et donc finalement, f ′(x) ≤

∑+∞
n=0

xn

n!
ie f ′(x) ≤ ex.

6. Soient x et y deux réels positifs. On note z = max(x, y). Prouver que l’on a: |f(x)−f(y)| ⩽ ez|x− y|.

Solution: Pour tout t ∈ [x, y] (ou [y, x]) on a |f ′(t)| ≤ ez, donc, par corollaire du théorème des
accroissements finis, |f(x)− f(y)| ≤ ez|x− y|.

7. Prouver que l’on a: f(x)− 1 ∼
x→0

x.

Solution: On a f ′(0) = 1 donc, par Taylor-Young, f(x) = f(0) + xf ′(0) + o(x) au voisinage de
0 ie f(x) = 1 + x+ o(x). Et cela s’écrit aussi f(x)− 1 ∼ x lorsque x → 0.

On pose, pour tout x > 0, g(x) =
∫ x

1
1

t[f(t)]2
dt.

8. Justifier que g est de classe C∞ sur ]0,+∞[.

Solution:

g est bien définie par on a f(t) > 0 pour t > 0.

Par théorème, g est de classe C1 sur R∗
+ et pour tout x > 0, g′(x) = 1

xf2(x)
.

Comme f est de classe C∞ sur R∗
+, g

′ l’est aussi et finalement, g aussi.

9. Étudier le signe de g sur ]0,+∞[.
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Solution: Par positivité de l’intégrale, si x ∈]0, 1], on a g(x) ≤ 0 et si x ∈ [1,+∞[, on a g(x) ≥ 0.

10. Montrer que : g(x) ∼
x→0

ln(x).

Solution: On a g(x) − 1
lnx

=
∫ x

1
dt

tf2(t)
−

∫ x

1
dt
t

=
∫ x

1
1−f2(t)
tf2(t)

dt. Or, lorsque x → 0, 1−f2(x)
xf2(x)

=
(1−f(x))(1+f(x))

xf2(x)
∼ 2. Cela prouve que

∫ 1

0
1−f2(t)
tf2(t)

dt converge (c’est l’intégrale d’une fonction continue

sur ]0, 1] qui a une limite finie en 0).

Ainsi, g(x)− lnx = o(lnx) lorsque x → 0 et donc g(x) ∼ lnx.

11. Prouver que pour tout t > 0, on a : f(t) > 1 + t.

Solution: Soit t > 0. On a f(t) − (1 + t) =
∑+∞

n=1
tn

n!2
≥ 0 puisque c’est la somme d’une série à

termes positifs. Et c’est même > 0 puisqu’au moins un des termes est > 0.

12. En déduire que g possède une limite finie lorsque x tend vers +∞.

Solution: g est croissante sur [1,+∞[ (puisque sa dérivée y est positive) et par le théorème de la
limite monotone, elle admet donc une limite en +∞. De plus cette limite est infinie lorsque g n’est
pas majorée et finie sinon.

De plus, pour x ≥ 1, par croissance de l’intégrale, on a g(x) ≤
∫ x

1
dt

t(1+t)2
. Or,

∫ +∞
1

dt
t(1+t)2

converge

car c’est l’intégrale généralisée d’une fonction positive, continue et équivalent en +∞ à 1
t3

qui est
intégrable par Riemann.

Finalement, comme 1
t(1+t)2

≥ 0, on g(x) ≤
∫ +∞
1

dt
t−1+t)2

.

Cela prouve que g est majorée et qu’ainsi sa limite en +∞ est finie.

13. Décomposer en éléments simples la fraction rationnelle F (X) = 1
X(1+X)2

.

Solution: On sait qu’il existe (a, b, c) ∈ R3 tel que

1

X(1 +X)2
=

a

X
+

b

X + 1
+

c

(X + 1)2

Par les méthodes classiques, on obtient a = 1 et c = −1.

Puis en faisant ×X puis en passant aux fonctions rationnelles et en faisant tendre x → +∞, on
obtient 0 = a+ b donc b = −1.

On conclut
1

X(1 +X)2
=

1

X
− 1

X + 1
− 1

(X + 1)2



14. Démontrer que pour tout x > 1, on a :

g(x) ⩽ ln

(
x

x+ 1

)
+

1

x+ 1
+ ln(2)− 1

2

Solution: En reprenant la majoration de la question 12, et en utilisant la croissance de l’intégrale,
on obtient pour x > 1, g(x) ≤

∫ x

1
1
t
− 1

t+1
− 1

(t+1)2
dt ce qui donne par calcul

g(x) ≤ lnx− ln(x+ 1) +
1

x
− 1 +

1

2
+ ln 2

ce qui est bien l’inégalité demandée.

15. En déduire que g est majorée par ln(2) sur ]0,+∞[.

Solution: g est négative sur ]0, 1] donc majorée par ln 2. Si x ≥ 1, on a ln x
x+1

≤ 0 puisque x
x+1

≤ 1,
1

x+1
≤ 1

2
et finalement, g(x) ≤ ln 2.
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