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EXERCICE I 
 

Q1. Soit une application ] [: 1,1f − → 2
  de classe 1C .  

 Justifier que ] [( )' 1,1f −  est une partie connexe par arcs de 2
 . 

 
Q2. On considère l’application ] [: 1,1f − → 2

  définie par : 

] ]

] [

(0, 0) si 1, 0
( ) 1 1² sin , ² cos si 0,1

t
f t

t t t
t t

 ∈ −
=   ∈  

. 

 
 On note pour tout ( , )x y ∈ 2

 , 2( , ) ² ²x y x y= + . 
 

a) Démontrer que f est dérivable en 0 puis sur l’intervalle ] [−1,1 . 

 Préciser le vecteur '( )f t  pour tout ] ]1, 0t ∈ −  et pour tout ] [0,1t ∈ . 
 
b) Démontrer que ∀ ] [0,1t ∈ , 2'( ) 1f t ≥  ] [( )' 1,1f −  n’est pas connexe par 

arcs de 2
 . 

 On pourra tracer la boule unité de 2
  pour la norme 2  et on acceptera un dessin 

pertinent comme preuve. 
 
 

EXERCICE II 
 
On pose pour tout ( , )x y ∈ 2

 , ( , ) (2 )² (1 )² (1 2 )²f x y x y x x y= − − + − + − − . 
On se propose de déterminer le réel 

2( , )
min ( , )

x y
f x y

∈
 par deux méthodes différentes. 

 
Q3. Première méthode 

Déterminer le seul point critique de la fonction f sur 2
 . Démontrer à l’aide d’une matrice 

Hessienne que f admet en ce point un minimum local. 
En admettant que ce minimum est global, donner la valeur du

2( , )
min ( , )

x y
f x y

∈
. 

 
Q4. Deuxième méthode 
 Sur l’espace vectoriel euclidien 3

 , on note le produit scalaire canonique par  et sa 

norme associée par ( , , ) ² ² ²x y z x y z= + + . 
 On note (2,1,1), (1,1, 2), (1,0,1)a u v= = =  et F = vect{ },u v . 
 On note b F∈  le projeté orthogonal du vecteur a sur le sous-espace vectoriel F. 
 Justifier que 0a b u a b v− = − =  et en déduire le vecteur b. 
 Déterminer la valeur de 

2( , )
min ( , )

x y
f x y

∈
. 

  

  
Autour du théorème de comparaison avec une intégrale  

Dans ce problème, on se propose de démontrer le théorème de comparaison avec une intégrale, 
puis de traiter des exemples et des applications. On terminera par deux contre-exemples. 
 

Partie I - Théorème de comparaison avec une intégrale 
 
Dans cette partie, f est une fonction continue, positive et décroissante sur +

 . 

On pose, pour tout entier naturel n, 
0

( )
n

n
k

S f k
=

=∑ , 
0

( )d
n

nJ f t t= ∫  et pour tout entier k non nul, 

1
( )d

k

k
k

I f t t
−

= ∫ . 

 
Q5. Préciser la monotonie des suites ( )nS  et ( )nJ , puis démontrer que pour tout entier k non nul, 

1
( ) ( )d ( 1)

k

k
f k f t t f k

−
≤ ≤ −∫ . 

 
Q6. Démontrer que pour tout entier n non nul, 1(0)n n nS f J S −− ≤ ≤ . 
 
 
Q7. Démontrer enfin les deux résultats : 

(1) f est intégrable sur +
 , si et seulement si, la série ( )f n∑  converge. 

(2) La série 
11

( )d ( )
n

nn

f t t f n
−

≥

 
− 

 
∑ ∫  converge. 

 
Q8. Un exemple. 

 On pose pour α > 0  et [ [2,x∈ + ∞ , 1( )
(ln )

f x
x x α

= .  

 

a) Étudier la monotonie de la fonction f, calculer 
2

( )d
x
f t t∫  et en déduire la nature de la série 

2

1
(ln )n n n α

≥
∑ . 

 

b) Dans le cas où 2α = , déterminer en fonction de ln2 , un encadrement de 2
2

1
(ln )n n n

+∞

=
∑ . 

 
Q9. Une application. 

 On pose pour n entier naturel non nul, 
1

1 ln
n

n
k

T n
k

=

= −∑ . 
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a) En utilisant le résultat (2) de la question Q7., établir que la suite ( )nT  converge. On notera 
γ  sa limite (constante d’Euler). 

 

b) Justifier que, au voisinage de +∞ , 
1

1 ln (1)
n

k

n o
k

=

= + γ +∑  et en déduire un équivalent au 

voisinage de +∞  de 
1

1n

k
k

=
∑ . 

 
Q10. Une application sur une série de fonctions. 

 On considère la série de fonctions 
1

n
n

g
≥
∑  où pour tout ] [0,x∈ + ∞ , ( )

² ²n
xg x

n x
=

+
. 

 
a) Étudier la convergence normale de cette série de fonctions sur ] [0, + ∞ . 
 

b) On pose pour x fixé non nul, ( )
² ²

xf t
t x

=
+

.  

 Établir que, pour n entier non nul, 
1

1 01

( )d ( ) ( )d
nn n

k

f t t f k f t t
+

=

≤ ≤∑∫ ∫ . 

 

c) En déduire que, pour tout x non nul, 
1

1arctan ( )
2 2n

n

g x
x

+∞

=

π π
− ≤ ≤∑ . 

 

d) Déterminer 
1

lim ( )n
x n

g x
+∞

→+∞ =
∑ . 

  La série de fonctions 
1

n
n

g
≥
∑  converge-t-elle uniformément sur ] [0, + ∞  ? 

 
 
 

Partie II - Contre-exemples 
 

Q11. On pose pour [ [1,x∈ + ∞ , ( ) sin(2 )f x x= π . 
 

a) Calculer pour n entier naturel non nul, 
1

( )d
n

n
f t t

+

∫ .  

 On pourra remarquer que 
11 1
2

1
2

( )d ( )d ( )d
n n n

n n n
f t t f t t f t t

+ + +

+
= +∫ ∫ ∫ . 

 On note x    la partie entière du réel x. 
 

b) Établir que pour [ [1,x∈ + ∞ , ( )
1

2sin 2 d ( 1)
x

t t xπ ≥ −  π∫ . 
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 La fonction f est-elle intégrable sur [ [1, + ∞  ? Que dire de la nature de la série 
1

( )
n

f n
≥
∑  ? 

 
Q12. On se propose de construire un contre-exemple d’une fonction f continue, positive et intégrable 

sur [ [1, + ∞  telle que 
1

( )
n

f n
≥
∑  diverge. 

 Pour tout entier n non nul, trouver un réel na  de sorte que le triangle de base [ ],n nn a n a− +  

et de hauteur 1 ait une aire égale à 1 .
²n

 

 Dessiner l’allure d’une courbe de fonction f définie et continue sur [ [1, + ∞ de la manière 
suivante : chaque entier naturel n non nul a pour image 1 et autour de chaque n (sur chaque 
intervalle [ ],n nn a n a− + ) tracer l’allure du triangle de base [ ],n nn a n a− +  et de hauteur 1. 

Enfin, la fonction est nulle en dehors de tous les intervalles [ ],n nn a n a− + . 
 Démontrer que cette fonction f fournit un contre-exemple. 
 

 

 

FIN 
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PROBLÈME
Autour du théorème de comparaison avec une intégrale

Partie I – Théorème de comparaison avec une intégrale

Q 5. Comme f est positive, on a : ∀n ∈ N, Sn+1 − Sn = f(n + 1) ⩾ 0, et : Jn+1 − Jn =
∫ n+1

n
f ⩾ 0 (on

utilise là la relation de Chasles et la croissance de l’intégrale). On en déduit que les suites (Sn)n∈N
et (Jn)n∈N sont croissantes.
Ensuite, par décroissance de f sur [k − 1, k], on a pour tout k ∈ N \ {0} :

f(k) =
∫ k

k−1
f(k)dt ⩽

∫ k

k−1
f(t)dt ⩽

∫ k

k−1
f(k − 1)dt = f(k − 1),

d’où le résultat : f(k) ⩽
∫ k

k−1
f(t)dt ⩽ f(k− 1). L’hypothèse de continuité intervient pour assurer

la convergence de toutes ces intégrales sur des segments.
Q 6. Soit n ∈ N\{0}. On somme de k = 1 à k = n l’encadrement de la question précédente et on utilise

la relation de Chasles. On obtient :
n∑

k=1
f(k) ⩽

∫ n

0
f(t)dt ⩽

n∑
k=1

f(k − 1) =
n−1∑
k=0

f(k),

d’où le résultat : Sn − f(0) ⩽ Jn ⩽ Sn−1.

3
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Q 7. Notons que f est bien continue sur R+. De plus, elle est décroissante sur R+ et minorée par 0 :
elle admet donc une limite finie en +∞. Nous nous en servirons pour démontrer le second point
de cette question.
Supposons f intégrable sur R+. Par positivité, on a pour tout n ∈ N \ {0} :

Sn

(Q 6)
⩽ Jn + f(0) ⩽

∫ +∞

0
f + f(0) < +∞.

Ainsi la suite (Sn)n∈N est croissante (Q 5) et majorée : elle converge, c’est-à-dire la série
∑
n⩾0

f(n)
converge.
Réciproquement, si la série

∑
n⩾0

f(n) converge, alors par positivité de f (qui autorise les calculs

dans [0, +∞]) on a : ∫
R+
|f | =

∫
R+

f = lim
n→+∞

∫ n

0
f = lim

n→+∞
Jn.

Par la question précédente et convergence de la série
∑
n⩾0

f(n), on a les inégalités suivantes en

passant à la limite : lim
n→+∞

Jn ⩽ lim
n→+∞

Sn−1 =
+∞∑
n=0

f(k) < +∞, donc :
∫
R+
|f | < +∞, ce qui

démontre l’intégrabilité de f sur R+. Ceci achève de démontrer que f est intégrable sur R+ si et
seulement si la série

∑
n⩾0

f(n) converge.

Démontrons que la série
∑
n⩾1

(∫ n

n−1
f(t)dt− f(n)

)
converge. Par la question Q 5, le terme général

de cette série est positif, ce qui autorise le calcul suivant dans [0, +∞] (encore justifié par la
question Q 5), qui fait apparaître une somme télescopique :

+∞∑
n=1

(∫ n

n−1
f(t)dt− f(n)

)
⩽

+∞∑
n=1

(f(n− 1)− f(n)) = f(0)− lim
+∞

f < +∞,

donc la série à termes positifs
∑
n⩾1

(∫ n

n−1
f(t)dt− f(n)

)
converge : d’où le résultat.

Remarque. La convergence de la série
∑
n⩾1

(∫ n

n−1
f(t)dt− f(n)

)
est visuelle, et cette visualisation

motive d’ailleurs les majorations ci-dessus. En effet, cette série représente la somme des aires bleues
ci-dessous :

x

y

y = f(x)y = f(x)

1 n− 1 n

f(n)

n + 1

4
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Si l’on « empile » ces aires, on voit immédiatement un majorant convenable :

x

y

...

f(0)

f(1)

f(2)

f(3)
f(4)

1 2

⩽ =

x

y

...

f(0)

f(1)

f(2)

f(3)
f(4)

1 2
x

y

f(0)

1 2

Ainsi la somme des aires bleues définit une suite croissante majorée : elle converge. Le rectangle
vert servant de majorant est la somme télescopique de la résolution.

Q 8. a) Comme α > 0, la fonction f est décroissante en tant que produit des fonctions décroissantes
et positives x 7→ 1

x
et x 7→ 1

(ln(x))α . Elle est aussi continue et positive sur R+. On a en outre,
pour tout x ⩾ 2 : ∫ x

2

dt

t ln(t) = [ln(| ln(t)|)]x2 = ln(| ln(x)|)− ln(ln(2)),

tandis que, si α ̸= 1 :

∀x ⩾ 2,
∫ x

2

dt

t(ln(t))α
=
[
− 1

1− α

1
(ln(t))α−1

]x

2
= 1

α− 1

(
1

(ln(2))α−1 −
1

(ln(x))α−1

)
.

On en déduit :
lim

x→+∞

∫ x

2
f =

{ 1
(α−1)(ln(2))α−1 < +∞ si α > 1,

+∞ si α ⩽ 1.

Comme f est positive, cela démontre qu’elle est intégrable sur [2, +∞[ si et seulement si :
α > 1.
Par la question précédente, dont toutes les hypothèses sont vérifiées (pour se ramener à R+,
il suffit de considérer la fonction translatée x 7→ f(x + 2), ce qui ne change rien à la nature
des intégrales et séries en jeu), la série

∑
n⩾2

1
n(ln(n))α

converge si et seulement si : α > 1.

b) Si α = 2, alors la question Q 6 (où l’on considère encore la fonction translatée x 7→ f(x + 2)
pour se ramener à R+) donne :

∀n ∈ N \ {0, 1},
∫ n+1

2

1
x(ln(x))2 dx ⩽

n∑
k=2

1
k(ln(k))2 ⩽

∫ n

2

1
x(ln(x))2 dx + 1

2(ln(2))2 ,

5
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et donc, quand n→ +∞, par le calcul de la question précédente :

1
ln(2) ⩽

+∞∑
k=2

1
k(ln(k))2 ⩽

1
ln(2) + 1

2(ln(2))2 .

Q 9. a) Pour tout n au voisinage de l’infini on a :

Tn =
n∑

k=1

1
k
−
∫ n

1

1
x

dx = 1−
n∑

k=2

(∫ k

k−1

1
x
− 1

k

)
.

En appliquant la question Q 7 à la fonction continue, positive et décroissante x 7→ 1
x

(ou plutôt

à sa translatée x 7→ 1
x+1 qui vérifie les mêmes hypothèses sur R+), la série

∑
k⩾2

(∫ k

k−1

1
x
− 1

k

)
converge, ce qui démontre la convergence de la suite (Tn)n∈N\{0}. D’où le résultat.

b) Par la question précédente : Tn = γ + o
n→+∞

(1), donc par définition de Tn :

n∑
k=1

1
k

= ln(n) + γ + o
n→+∞

(1).

Comme le logarithme tend vers l’infini, on en déduit :
n∑

k=1

1
k

= ln(n) + o
n→+∞

(ln(n)) ∼
n→+∞

ln(n).

Q 10. a) On a dans [0, +∞] :
+∞∑
n=1
∥gn∥∞ ⩾

+∞∑
n=1
|gn (n)| =

+∞∑
n=1

1
2n

= +∞,

car la série harmonique
∑
n⩾1

1
n

est à termes positifs et divergente. On en déduit que la série de

fonctions
∑
n⩾1

gn ne converge pas normalement sur ]0, +∞[.

b) Notons d’abord que f est définie et continue sur R+, puisque le dénominateur est continu et
ne s’annule pas sur cet intervalle.
La fonction t 7→ t2 étant positive et croissante sur R+, les opérations élémentaires sur les
inégalités impliquent que f est décroissante et positive sur R+. On peut donc lui appliquer
la question Q 5, d’où le résultat en sommant l’inégalité f(k) ⩽

∫ k

k−1
f(t)dt de k = 0 à k = n,

puis en sommant l’inégalité
∫ k

k−1
f(t)dt ⩽ f(k − 1) de k = 1 à k = n + 1 :

∀n ∈ N \ {0},
∫ n+1

1
f(t)dt ⩽

n∑
k=1

f(k) ⩽
∫ n

0
f(t)dt.

c) Soit n ∈ N \ {0}. On a :∫ n

0
f(t)dt =

∫ n

0

1
x

1(
t
x

)2
+ 1

dt =
[
arctan

(
t

x

)]n

0
= arctan

(
n

x

)

et de même : ∫ n+1

1
f(t)dt = arctan

(
n + 1

x

)
− arctan

(1
x

)
.

6
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Comme x est strictement positif, on a : lim
n→+∞

n+1
x

= lim
n→+∞

n
x

= +∞, donc par composition
de limites :

lim
n→+∞

∫ n

0
f(t)dt = π

2 , et : lim
n→+∞

∫ n+1

1
f(t)dt = π

2 − arctan
(1

x

)
.

On passe à la limite dans l’encadrement de la question précédente. Notons que la limite quand
n → +∞ de

n∑
k=1

f(k) existe bien (dans [0, +∞] a priori) puisque nous sommons des termes

positifs. Comme f(k) = gk(x) pour tout k ∈ N \ {0}, on en déduit :

π

2 − arctan
(1

x

)
⩽

+∞∑
n=1

gn(x) ⩽ π

2 ,

d’où le résultat, pour tout x > 0. Ceci démontre en passant la convergence simple de la série
de fonctions positives

∑
n⩾1

gn sur R∗
+.

d) Par la question précédente et le théorème des gendarmes : lim
x→+∞

+∞∑
n=1

gn(x) = π

2 .

On en déduit que la série de fonctions
∑
n⩾1

gn ne converge pas uniformément sur ]0, +∞[. En

effet, dans le cas contraire, comme on a aussi :

∀n ∈ N \ {0}, lim
+∞

gn = 0,

par le théorème de la double limite on aurait :

lim
x→+∞

+∞∑
n=1

gn(x) =
+∞∑
n=1

lim
x→+∞

gn(x) = 0,

ce qui contredit le calcul de limite effectué ci-dessus. D’où le résultat par l’absurde.
Remarque. Ceci conforte l’absence de convergence normale, déjà constatée à la question a).

Partie II – Contre-exemples

Q 11. a) Soit n ∈ N\{0}. Notons que le sinus est positif sur [0, π] et négatif sur [π, 2π]. Par périodicité,
x 7→ sin(2πx) est positive sur

[
n, n + 1

2

]
et négative sur

[
n + 1

2 , n + 1
]
. On a alors, par la

relation de Chasles :∫ n+1

n
f =

∫ n+ 1
2

n
f +

∫ n+1

n+ 1
2

f

=
∫ n+ 1

2

n
sin(2πx)dx−

∫ n+1

n+ 1
2

sin(2πx)dx

=
[
−cos(2πx)

2π

]n+ 1
2

n

−
[
−cos(2πx)

2π

]n+1

n+ 1
2

= −cos(2πn + π)
2π

+ cos(2πn)
2π

−
(
−cos(2π(n + 1))

2π
+ cos(2πn + π)

2π

)

= −−1
2π

+ 1
2π
−
(
− 1

2π
+ −1

2π

)
= 2

π
.

7
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b) Soit x ∈ [1, +∞[. Par positivité de l’intégrande, on a :

∫ x

1
| sin(2πt)|dt ⩾

∫ ⌊x⌋

1
| sin(2πt)|dt =

⌊x⌋−1∑
n=1

∫ n+1

n
| sin(2πt)|dt

(a))=
⌊x⌋−1∑
n=1

2
π

= 2
π

(⌊x⌋ − 1) ,

ce qui donne la minoration attendue. Comme le minorant tend vers l’infini, on en déduit :

lim
x→+∞

∫ x

1
f(t)dt = +∞,

donc f n’est pas intégrable sur [1, +∞[.
Or le sinus est nul en tous les multiples entiers de π, donc la série

∑
n⩾1

f(n) =
∑
n⩾1

0 est

trivialement convergente : elle n’est pas de même nature que l’intégrale
∫ +∞

1
f . C’est bien

sûr la monotonie de f qui ne permet pas d’appliquer la question Q 7.
Q 12. Il suffit de prendre an = 1

n2 . La longueur de [n−an, n+an] est alors égale à 2
n2 , or l’aire du triangle

de base [n − an, n + an] et de hauteur 1 est égale à la longueur de la base fois la hauteur divisée
par 2 : son aire est bien égale à 1

n2 .
Voici le graphe de la fonction décrite par l’énoncé. Du moins, nous ne respectons la description
que pour n ⩾ 2, car les intervalles [1 − a1, 1 + a1] et [2 − a2, 2 + a2] ne sont pas disjoints (on a
1 + a1 = 2) : nous posons la fonction comme étant nulle sur [1, 2− a2]. Ceci étant dit :

x

y

1

0 1 2 3 4 5 6 7 8 9

Cette fonction est continue et positive. On a dans [0, +∞] :
∫ +∞

1
f =

+∞∑
n=2

∫ n+an

n−an

f =
+∞∑
n=2

1
n2 < +∞,

puisqu’on reconnaît une série de Riemann d’exposant strictement supérieur à 1. Pourtant, toujours
dans [0, +∞] :

+∞∑
n=1

f(n) =
+∞∑
n=2

1 = +∞,

donc la série
∑
n⩾1

f(n) et l’intégrale
∫ +∞

1
f n’ont pas la même nature. C’est bien sûr la monotonie

de f qui est encore mise en défaut.
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