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Autour du théoreme de comparaison avec une intégrale

Dans ce probleme, on se propose de démontrer le théoréme de comparaison avec une intégrale,
puis de traiter des exemples et des applications. On terminera par deux contre-exemples.

Partie | - Théoréeme de comparaison avec une intégrale
Dans cette partie, f est une fonction continue, positive et décroissante sur R*.

n n
On pose, pour tout entier naturel n, S, :Zf(k), J, :I f(t)dt et pour tout entier k non nul,
0
k=0

k
I =_[ F(t)dt .
k-1

Q5. Préciser la monotonie des suites (S,,) et (J,), puis démontrer que pour tout entier k non nul,

k
f(k)< Ik_1f(t)dt <f(k-1).

Q6. Démontrer que pour tout entier n non nul, S, —f(0)<J, <S,_,4.

Q7. Démontrer enfin les deux résultats :

(1) festintégrable sur R*, si et seulement si, la série Zf(n) converge.

(2) La série Z“ f(t)dt—f(n)} converge.

n
neqL” 1

Q8. Un exemple.
1

On pose pour o >0 et X [2+, f(x)= .
x(In x)*

. X
a) Etudier la monotonie de la fonction f, calculer I f(t)dt et en déduire la nature de la série
2

1
Z n(inn)*

n>2

+00
b) Dans le cas ou a =2, déterminer en fonction de In2, un encadrement de Z L

—.
P n(inn)

Q9. Une application.

n

On pose pour n entier naturel non nul, T, = Z%—Inn.

k=1



b)

En utilisant le résultat (2) de la question Q7., établir que la suite (T,) converge. On notera
v sa limite (constante d’Euler).

Justifier que, au voisinage de +«, Z%: Inn+vy+o0(1) et en déduire un équivalent au
k=1

n
voisinage de +« de Z%
k=1

Q10. Une application sur une série de fonctions.

On considére la série de fonctions Zgn ou pour tout x € ]0, +oo[, g,(x)=

a)

b)

d)

X
n2+x2’

n>1
Etudier la convergence normale de cette série de fonctions sur ]0,+ o[ .

X

On pose pour x fixé non nul, f(t)= .
2+ x?

Etablir que, pour n entier non nul, I f(t)dt < I f(t

T
En déduire que, pour tout x non nul, E—arctan; Zgn(x )<—.

n=1

l\)

+ o0
Déterminer Ilim g,(x).

X—>+0 n=1

La série de fonctions Zgn converge-t-elle uniformément sur |0, + o[ ?

n>1

Partie Il - Contre-exemples

Q11. On pose pour X €[1,+o[, f(x)=|sin(2nx)|.

a)

b)

Calculer pour n entier naturel non nul, I f(t)dt.

1
n+—

n+1
2f(t)dt+J. ()t
n+—

n+1
On pourra remarquer que J.

F(t)dt = I

n n

On note | x | la partie entiére du réel x.

. . X 2

Etablir que pour x €[1,+ o[, J. [sin(2nt)|dt > = (| x |-1).
1 T
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La fonction f est-elle intégrable sur [1, + oo[ ? Que dire de la nature de la série Zf(n) ?

n=1

Q12. On se propose de construire un contre-exemple d’une fonction f continue, positive et intégrable

sur [1+o[ telle que Zf(n) diverge.

n>1

Pour tout entier n non nul, trouver un réel a,, de sorte que le triangle de base [n —a,, N+ a,,]
. o .1
et de hauteur 1 ait une aire égale a —-
n

Dessiner l'allure d’'une courbe de fonction f définie et continue sur [1,+oo[ de la maniére

suivante : chaque entier naturel n non nul a pour image 1 et autour de chaque n (sur chaque
intervalle [n—a,, n+a,]) tracer l'allure du triangle de base [n-a,, n+a,] et de hauteur 1.

Enfin, la fonction est nulle en dehors de tous les intervalles [n -a,, n+ an] .
Démontrer que cette fonction f fournit un contre-exemple.

FIN
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Q5.

Q6.

PROBLEME
Autour du théoréme de comparaison avec une intégrale

Partie I — Théoréme de comparaison avec une intégrale

n+1
Comme f est positive,ona:Vn € N, S,y1 — S, = f(n+1)>0,et: Jppqg — Jp, = f =0 (on
n
utilise 1a la relation de Chasles et la croissance de I'intégrale). On en déduit que les suites (S,,)nen
et (Jn)nen sont croissantes.

Ensuite, par décroissance de f sur [k — 1, k|, on a pour tout k € N\ {0} :

k
Fat< [ fle=1)dt = f(k - 1),

k—1

k k
)= [ fwa< |
k—1 k—1
k
d’ou le résultat : f(k) < / f(t)dt < f(k—1). L’hypothese de continuité intervient pour assurer
k-1
la convergence de toutes ces intégrales sur des segments.

Soit n € N\ {0}. On somme de k = 1 a k = n I'encadrement de la question précédente et on utilise
la relation de Chasles. On obtient :

n n

S < [ < 3 -1 = 3 fh

k=1 k=1

d’ou le résultat : S, — f(0) < J,, < Sp_1.
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Q7. Notons que f est bien continue sur R,. De plus, elle est décroissante sur R, et minorée par 0 :
elle admet donc une limite finie en 4+00. Nous nous en servirons pour démontrer le second point
de cette question.

Supposons [ intégrable sur R. Par positivité, on a pour tout n € N\ {0} :

(Q86) 400
S, < Ju+ f(0) < : f+ f(0) < +oo.

Ainsi la suite (S,)nen est croissante (Q5) et majorée : elle converge, c’est-a-dire la série Y f(n)

n=0
converge.

Réciproquement, si la série Z f(n) converge, alors par positivité de f (qui autorise les calculs
n=0

Jor= [ 5= [T = tm

Par la question précédente et convergence de la série Z f(n), on a les inégalités suivantes en
n=0

dans [0,400]) on a :

passant a la limite : hm In hm Sp-1 = Zf < +00, donc : / |f] < 400, ce qui

n—-+4o0o
démontre 'intégrabilité de f sur R+ Cem acheve de démontrer que f est 1ntegrable sur R, si et
seulement si la série Z f(n) converge.
n=0

Démontrons que la série » ( f)det — f (n)) converge. Par la question Q 5, le terme général
n>1
de cette série est positif, ce qui autorise le calcul suivant dans [0,400] (encore justifié par la

question Q 5), qui fait apparaitre une somme télescopique :

S ([ 70t = 1) < X2 (7= 1) = Fl0) = £0) = im f <

donc la série & termes positifs » ( f)dt — f (n)> converge : d’ou le résultat.

n>1
Remarque. La convergence de la série » ( f()dt — f (n)) est visuelle, et cette visualisation
n>1
motive d’ailleurs les majorations ci-dessus. En effet, cette série représente la somme des aires bleues
ci-dessous :
Yy
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Qs.

Si 'on « empile » ces aires, on voit immédiatement un majorant convenable :

y y y
£(0) - £(0) (0)

f2) - f2)
f(3) - f(3)
f(4) A f(4)

g
—_
[\]
—_
[\

Ainsi la somme des aires bleues définit une suite croissante majorée : elle converge. Le rectangle
vert servant de majorant est la somme télescopique de la résolution.

a)

b)

Comme « > 0, la fonction f est décroissante en tant que produit des fonctions décroissantes
et positives x +— % et r +— W Elle est aussi continue et positive sur R,. On a en outre,
pour tout z > 2 :

A tfi@) = [in(| (1) )}; = In(|In(x)]) — In(In(2)).

tandis que, si v # 1 :

e dt 1 I 1 L
Y = 2, /2 W - [_1 — (ln(t))oa—l‘| o a—1 ((IH(Q))O‘_l B (ln(x))a—1> .

On en déduit : 1 |
fm [ =] EomEET < e soa>1,

Comme f est positive, cela démontre qu’elle est intégrable sur [2,400] si et seulement si :
a > 1.

Par la question précédente, dont toutes les hypotheses sont vérifiées (pour se ramener a R,
il suffit de considérer la fonction translatée x +— f(z + 2), ce qui ne change rien a la nature

des intégrales et séries en jeu), la série Z _
n>2 n(Iln(n))e
Si a = 2, alors la question Q 6 (ou 'on considere encore la fonction translatée x — f(z + 2)
pour se ramener a R, ) donne :

converge si et seulement si : a > 1.

1

n+1 1 " 1 1
eI [ o < < et Tme e
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Qo.

Q 10.

b)

b)

et donc, quand n — 400, par le calcul de la question précédente :

1 1
@ S 2 EmEE S @) T 2m@)?

Pour tout n au voisinage de I'infini on a :

n

| n 1 E1 1
jzzzk‘ﬂx“:1—2<ﬂlm—Q'

k=2
En appliquant la question Q 7 a la fonction continue, positive et décroissante z % (ou plutot

k11
a sa translatée x — —= qui vérifie les mémes hypotheses sur R.), la série Z < / - = /{:)
k>2 \7k-1 L
converge, ce qui démontre la convergence de la suite (7},)nen fo3. Dot le résultat.

Par la question précédente : T,, = v+ o (1), donc par définition de T, :

n—+

n)+~v+ o (1).

n—-+4o0o

w \

-

Comme le logarithme tend vers 'infini, on en déduit :

"1

;;1 P In(n) + THoﬂo(ln(n)) e In(n).
On a dans [0, +o0] :

“+o0o +oo 1

nz::l gnllco > Z gn (n)| = % = +09,

1
car la série harmonique Z — est a termes positifs et divergente. On en déduit que la série de
n=1

fonctions Z gn ne converge pas normalement sur |0, +0o].

n>1
Notons d’abord que f est définie et continue sur R, , puisque le dénominateur est continu et
ne s’annule pas sur cet intervalle.

La fonction ¢t + t? étant positive et croissante sur R, les opérations élémentaires sur les
inégalités impliquent que f est décroissante et positive sur R,. On peut donc lui appliquer
k

la question Q 5, d’otut le résultat en sommant l'inégalité f(k) < / f(t)dt de k=0ak =n,
k-1

k
puis en sommant 1'inégalité / fOdt< f(k—1)dek=1ak=n+1:
k-1

vneN\(0), [T rnae< S i) < [t

k=1

Soit n € N\ {0}. On a :

et de méme :
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Q11.

Q)

Comme z est strictement positif, on a : lim " = lim 2 = 400, donc par composition
n—+oo ¥ n—-+oo &
de limites :
) n T ) n+1 T 1
nl_l)I_iT_lOO ; f)dt = 5 et : nl_l)I_iT_lOO 1 f)dt = 5 arctan (3:) :

On passe a la limite dans ’encadrement de la question précédente. Notons que la limite quand
n
n — +oo de Y f(k) existe bien (dans [0, +0c] a priori) puisque nous sommons des termes

k=1
positifs. Comme f(k) = gi(x) pour tout k£ € N\ {0}, on en déduit :

g — arctan ( ) Z gn(z g

d’out le résultat, pour tout x > 0. Ceci démontre en passant la convergence simple de la série
de fonctions positives Z gn sur R7.

n>1
+oo T
Par la question précédente et le théoréme des gendarmes : lim Y g,(z) = —.
T—+00 = 2
On en déduit que la série de fonctions Y _ g, ne converge pas uniformément sur |0, +oo|. En

n=1
effet, dans le cas contraire, comme on a aussi :

vn € N\ {0}, lig.}gnzo,

par le théoreme de la double limite on aurait :

lim Zgn Z lim g,(z) =0,

:1:%+oo x~>+oo

ce qui contredit le calcul de limite effectué ci-dessus. D’ou le résultat par ’absurde.
Remarque. Ceci conforte I’absence de convergence normale, déja constatée a la question a).

Partie II — Contre-exemples

Soit n € N\ {0}. Notons que le sinus est positif sur [0, 7] et négatif sur [, 27]. Par périodicité,

x — sin(27z) est positive sur {n,n + %} et négative sur {n +35,n+ 1} On a alors, par la
relation de Chasles :

n—+
/n+
n

_ [_COS(%W)TH—é B [_COS(QWQZ)TLH

NI

n+1
sin(2mx)dz — / sin(27x)dx
n+

[N

N

2 2 41
2
cos(2mn +m)  cos(2mn) cos(2m(n+1))  cos(2mn + )
2m 2m 2T 2T

S S N W
o 21 21 2T

2
m
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b) Soit x € [1,400[. Par positivité de I'intégrande, on a :

lz] -1

x lz] n+1
/ ]sin(27rt)\dt>/ |sin(2rt)|dt = 3 / | sin(2mt)|dt 2 Z d m —1),
1 1 n

n=1

ce qui donne la minoration attendue. Comme le minorant tend vers 'infini, on en déduit :

T

Jim ot =
donc f n’est pas intégrable sur [1, +ool.
Or le sinus est nul en tous les multiples entiers de 7, donc la série > f(n) = Y 0 est
n=>1 n>1

“+o0o

trivialement convergente : elle n’est pas de méme nature que l'intégrale / f. C’est bien
1

stir la monotonie de f qui ne permet pas d’appliquer la question Q7.

Q12. Il suffit de prendre a,, = # La longueur de [n— a,,n+ a,] est alors égale a n%, or 'aire du triangle
de base [n — an,n + a,) et de hauteur 1 est égale a la longueur de la base fois la hauteur divisée
par 2 : son aire est bien égale a #

Voici le graphe de la fonction décrite par I’énoncé. Du moins, nous ne respectons la description
que pour n > 2, car les intervalles [1 — a1, 1 + a1] et [2 — az,2 + as] ne sont pas disjoints (on a
1+ a; = 2) : nous posons la fonction comme étant nulle sur [1,2 — as]. Ceci étant dit :

Cette fonction est continue et positive. On a dans [0, +o0] :

n—+an +001
/ f= z/ =3 <t

puisqu’on reconnailt une série de Riemann d’exposant strictement supérieur a 1. Pourtant, toujours
dans [0, +o0] :

+oo +oo
Zf(n)zle—i—oo,
n=1 n=2

“+oo
donc la série Z f(n) et l'intégrale f n’ont pas la méme nature. C’est bien sir la monotonie
n=1 1
de f qui est encore mise en défaut.



